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Chapter 1

Introduction

Hex is a two-player game played on a rhombic board with a hexagonal
pattern of cells. The rules are simple: Black and White take turns occupying
a cell and the one to form a chain connecting his two opposite sides, and
thereby blocking the other from connecting his sides, wins.

Out of these simple rules arises a game that is surprisingly difficult to
play well. It has a number of interesting mathematical features and is the
subject of modern artificial intelligence research. Even its history is worth
looking into as it was discovered first by the Danish scientist, artist and
poet Piet Hein and rediscovered only a few years later by the American
mathematician and Nobel prize winner John Nash. Belonging to the spheres
of both games and mathematics it has enjoyed great attention from people
like Martin Gardner and the late French mathematician Claude Berge.

This paper is a thesis for a Master of Science degree at the Department
of Mathematics and Computer Science, University of Southern Denmark.
The objective of the thesis is to provide a description of the board game
Hex, its mathematical aspects and its history.

The thesis may not be Everything You Always Wanted to Know About
Hex—But Were Afraid to Ask1—but it is the so far most comprehensive
account of the history of Hex and brings to light new details about the
circumstances of its invention. It is also the first time that all the aspects
of the game are collected into one document.

The text is divided into six main chapters each concerning an indepen-
dently interesting aspect of the game of Hex.

The History of Hex is interesting mainly because of the personages behind
Hex, but also because it is available and yet until now not fully dis-
covered. Some of Piet Hein’s original manuscripts have been brought
to light for the first time and parts of his columns in the Danish news-
paper Politiken are reviewed.

1Everything You Always Wanted to Know About Sex—But Were Afraid to Ask is a
film by Woody Allen.
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6 CHAPTER 1. INTRODUCTION

Game theory in Hex includes a proof of existence of the first player’s
winning strategy. The necessary properties are easily ascertained but
are not as easily proven. The present proof relies mostly on graph
theory.

The complexity of Hex is known to be deep. We shall show Hex to belong
to PSPACE by a series of transformations from a quantified boolean
formula.

Playing Hex is simple; playing Hex well is much more complicated. Some
advice is useful.

Variants of Hex offer new insights and experiences. The beauty and sim-
plicity of Hex can be found in different games; by looking into other
games we shall discover the properties of Hex.

Recent research revolves around creating the best artificial Hex player.
Highly different approaches to this challenge are being taken and each
brings new knowledge.

Appendix A contains some of my efforts to communicate the wonders of
Hex to a wider audience than the readers of this document. I have written
a website, a popular article and commenced a textbook on the subject.

Appendix B contains a comprehensive list of Hex in the Danish news-
paper as well as the first translations of some of Piet Hein’s interesting
unpublished manuscripts.

In my work I use concepts and terms and even a few results from game
theory, graph theory and general mathematics. It is not the purpose of this
thesis to define these and so the reader is expected to have some knowledge
of the areas. All notation, terminology, lemmas and theorems can be found
in elementary textbooks on the respective subjects.

All that remains now is that I thank all the people who have been helpful
during this year’s work. I was fortunate that John F. Nash, Jr., David
Gale, Martin Gardner, Harold W. Kuhn were able to help me establish the
correct history at Princeton University. Aage Bohr provided details on The
Parenthesis. Hugo Piet Hein keeps an impressive archive of his father’s work
and I am grateful for being allowed to look into it as well as for the help he
provided. Other people have aided and some have merely been interested
and I thank all for making the work pleasant.

I must thank also my advisor Bjarne Toft for his guidance and for never
losing interest. I hope that he does not take offence that I beat him even as
second player.

Thomas Maarup
Odense, May 27, 20052

2The present version has been approved and had minor errors fixed.



Chapter 2

Resume p̊a dansk

Dette speciale ved Institut for Matematik og Datalogi, Syddansk Univer-
sitet har titlen Hex—Alt du gerne ville vide om Hex, men ikke turde spørge
om.1 Det er en omfattende gennemgang af brætspillet Hex, dets historie og
matematiske aspekter, herunder spilteori og grafteori.

Hex er et spil for to spillere p̊a et rombisk bræt inddelt i n×n sekskanter.
Spillerne ejer hver et par modst̊aende sider som de forsøger at forbinde ved
skiftevis at besætte et felt. Vinder er den som dette lykkes for.

Spillet er opfundet af Piet Hein i 1942 og offentliggjort i Politiken i en
regelmæssig klumme i 1942–43. Seks år senere opfandt John Nash spillet,
uafhængigt af Hein, p̊a Princeton Universitet. Siden beskrev Martin Gard-
ner Hex i sin klumme om matematiske spil i Scientific American hvorfra det
blev kendt internationalt.

Særligt interessant er spillet fordi der altid er netop en vinder og da det
er endeligt, med fuld information og uden tilfældige begivenheder m̊a der
findes en vindende strategi for en af spillerne. Denne tilfalder første spiller
som en konsekvens af at ingen træk kan være til ulempe.

En generel vindende strategi (dvs for vilk̊arlig størrelse bræt) kan
sandsynligvis ikke findes idet problemtypen at finde en s̊adan, kan vises
at være PSPACE-komplet. For disse problemtyper gælder at de kan løses
p̊a polynomiel plads men kræver (s̊a vidt vides) eksponentiel tid i forhold
til problemets størrelse.

Det er let at spille Hex men sværere at blive god til det. Dette speciale
giver nogle r̊ad p̊a baggrund af den matematiske viden.

Reglerne til Hex kan varieres med henblik p̊a at opn̊a ny viden om spillet.
S̊aledes er blandt andre Y og Bridg-It opst̊aet.

Der foreg̊ar til stadighed en tilnærmelse af løsningen p̊a Hex. Nogle
forsøger sig med at kortlægge hele spiltræer mens hovedparten af ressourcer
sættes ind p̊a algoritmer til søgning i og evaluering af positioner p̊a Hex-
brætter.

1Den danske titel er en direkte oversættelse af et ordspil p̊a en film af Woody Allen.
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8 CHAPTER 2. RESUME PÅ DANSK

Med udgangspunkt i at Hex er PSPACE-komplet argumenteres der for
at det, trods indsatsen, ikke vil lykkes at løse Hex. Ikke alene har mange
års forskning været forgæves, en løsning vil desuden have en uh̊andterlig
størrelse.



Chapter 3

The History of Hex

This contains a history of Hex, from its first invention in 1942 and bringing
it right up to the latest research. Beginning with a brief outline I shall
proceed to describe in more detail various points of interest.

According to Hein’s personal notes he invented Hex while he was pon-
dering the Four-Colour Conjecture, apparently trying to disprove it. I shall
describe Hein’s ideas in some detail in section 3.1.

In 1942 Piet Hein was asked to lecture in an association for mathematics
and natural science students at The University of Copenhagen. The chair-
man of the association was Aage Bohr (later to recieve the Physics Nobel
Prize) whose father Niels (also a Nobel Laureate) knew Hein. They had also
invited the student Chess club as the title of the lecture was Mathematics
regarded as Games—The Mathematics of Games. During his lecture Hein
spoke mainly of conditions for good games. He concluded the session with
a demonstration of a board game that he had only just constructed and
which, according to his conditions, should be a very good game.

On December 26, 1942 the game was described to the general public
for the first time in the Danish newspaper Politiken under the name Poly-
gon.[15] Hein had made an agreement with the newspaper that he was to
write a regular column and the paper would publish the game. In section 3.2
I shall provide a reading of a few of these columns.

In 1949 John Nash was a graduate student at Princeton University. He
invented Hein’s game independently, as an example of a game in which the
first player has a winning strategy that is unknown. The game quickly
became popular among the other students.

In 1953 the American games company Parker Brothers discovered and
marketed the game. They gave it the catchy name Hex, obviously because of
the hexagonal tiles. This commercial version is now long out of production,
but the name is the one that stuck.

One of Martin Gardner’s early columns in Scientific American mentioned
Hex in the summer of 1957 [11]. Gardner was a friend of Piet Hein and it

9



10 CHAPTER 3. THE HISTORY OF HEX

is likely that Hein himself suggested Hex as a subject for the column. In it
Gardner summarizes the history of Hex so far and offers a sketch of Nash’s
proof of the existence of a winning strategy for the first player.

Apparently Gardner’s description of Hex was read in Denmark, and in
the fall of 1957 Hex was mentioned in a number of scientific and popular
Danish magazines. Hein exploited the attention to have the game produced
with a big wooden board by the games company Skjøde Skjern. Incidentally,
Hugo Piet Hein, the son of Piet Hein is reintroducing and selling a copy of
that board now.

Recent research on Hex is focused primarily on creating a program that
can play Hex. The programs grow stronger each year, but as yet none have
achieved the playing skill of expert human players. Different approaches
have been attempted, and in chapter 8 we shall take a look at the most
important programs.

At California Polytechnic State University Kevin O’Gorman is building
a database (called OHex) of Hex games extracted from some of the computer
programs. This database currently offers hints to the best moves in actual
play. This exhaustive approach is the only (known) way of finding the
winning strategies on specific board sizes, though O’Gorman rightly does
not expect to find any for large boards let alone for all sizes. As it can only
use the actual games that are in the database it will sometimes give hopeless
responses during play. Yet, with every game added the database improves
its play. The OHex project will also be treated in chapter 8.

3.1 The Invention of Hex

Usually mathematical inventions or discoveries are comprehensively de-
scribed and we have ample documentation for the common mathematical
knowledge before the breakthrough and thus what led to it. That is usually
not the case with border areas like that of mathematical games. Yet, in the
case of Hex, there are a few sets of notes, one of them being an undated
manuscript by Piet Hein which I believe is from his lecture to The Paren-
thesis, a mathematical association at The University of Copenhagen, on an
evening in 1942. I found this in Piet Hein’s own archives. A translation of
it and a few other manuscripts are found in appendix B.2.

During this lecture Hein describes how he came up with Hex. For a
number of years he had been examining and creating games as a hobby
and managed to set up a list of conditions for good games. This amounts
to a list of six conditions: a game must be fair, progressive, final, easy to
comprehend, strategic and decisive.

Hein’s offset for the lecture was “mathematics as a game, and [Hex] is
a simple example of looking at games as mathematics.” Hein’s point was
that mathematics is different from the empirical sciences, in that it creates
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models that are manipulated according to rules similar to those of a game—
these models are in turn compared to the actual world through empirical
methods and thus help us make explanations and predictions.

In a sketch for the first column in Politiken Piet Hein describes how
the complete game of Hex ocurred to him while working with the Four-
Colour Conjecture: “The game builds on the simple geometrical property
of a planar surface that two lines within a square each connecting a pair of
opposite sides must intersect.”

He was considering four countries in a ring, realising that only one pair
of opposite countries can share a border across the middle. Had it been
possible for both pairs of opposite countries to touch across the middle,
then a fifth country encircling and touching the first four would disprove
the theorem. This image is clearly equivalent to a complete graph with five
vertices (K5) embedded in the plane.

Hein’s idea was a game in which two players try to connect their two
opposing homelands. He writes in [sec. B.2.2] that “This has not been
utilised before though it is such a simple quality”—Cameron Browne agrees
to the status of Hex as genuinely innovative and describes only two earlier
but unknown connection games.[6]

The objective of the game thus being decided Hein still needed the struc-
ture of the boards and the rules of the game. He realised that by “construct-
ing the gameboard from square cells—or triangular cells for that matter—
then four or more cells will touch by their corners which will stunt the
game.”[sec. B.2.2] The hexagonal structure is the most simple and elegant
solution and the one that both Hein and Nash settled on.

Hein preferred as few and simple rules as possible: “there is no reason
to delimit the rule from the general: that markers can be placed anywhere”
and in alternating turns. He concludes that he did not even contribute much
to the invention.

When the two halves of the idea—i.e. the crossed connections
and the hexagonal grid—had found each other, not only was the
idea conceived but the entire game was executed.[sec. B.2.2]

It seems that Hein was fully aware of the game’s potential and that he
was one of the first to use the connection aspect for a game as well. He was
thorough in his exploration of the game and had both mathematicians and
chess experts examine it and ultimately used his platform in Politiken for
the cause as well.

3.2 Politiken

When Piet Hein presented Polygon in Politiken he was already a familiar
name to the readers. For a few years he had been writing his ‘Grooks’, small
aphorisms or poems on everyday life.
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Through the months December 1942 to August 1943 Piet Hein wrote a
recurring column on Hex in Politiken. The first few days contained analy-
ses of openings, discussions of completed games and he had another active
period in late January, but eventually the column offered only a problem
and the solution to the previous problem. Appendix B.1 is a list of the
Politiken columns. One notices how the regularity of the beginning fades
into no obvious pattern and stops without further notice. The solution to
the last problem (number 49) was never even printed.

Piet Hein was very good at marketing his own inventions and this series
of problems and contests was doubtless a part of a marketing ploy. However,
as mentioned, he was also using his audience in a search for discoveries
with regard to a strategy. He knew that the game, being one of complete
information, does have a winning strategy and thus kept encouraging the
readers to send him what they believed to be winning strategies. He had
expert chess players search for the strategy as well and had a good feeling
for the complexity of the game.

In August of 1943 the column stopped (or maybe rather ebbed out)
for unknown reasons. Perhaps this was when Piet Hein went to Argentina
because of the German occupation of Denmark and Hein being married
to a Jew—or perhaps he just lost interest. The latter explanation, however
unexciting, is the more likely and would also explain the irregular appearance
of the column.

It seems that Denmark forgot about Hex for a number of years and had
it not been for the invention at Princeton University we would probably not
have known it today.

Below we shall look at excerpts from some of the columns, predominantly
from the early period. In particular we shall see some of Piet Hein’s problems
and prize contests.

3.2.1 December 26, 1942

Would you like to learn Polygon? Piet Hein has constructed a
game that can be practised with equal joy by the chess expert
and one who is merely able to hold a pencil.

This is how the first published article ever about Hex begins. It describes
the game in detail and thoroughly stresses the simplicity of the rules and
the complexity that not even experienced chess players have been able to
see through.

Hein writes that since two lines inside a square each connecting their
pair of opposing sides must intersect, it must be possible to create a game
that challenges two players to connect opposing sides so that only one can
succeed. He does not mention his inspiration from the Four-Colour Theorem
as the audience is ordinary readers. “But it does not work to give the board
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a quadratic pattern as e.g. a Chess board. For on a board where four or
more fields meet in one point, the two competing parts will immediately
get into a deadlock with each other. So none of them gets a connection.
Therefore one is forced to use a board where at most three cells meet. The
solution which is simplest and most regular is the hexagonal pattern.”

Figure 3.1: The two ideas that
led to Hex: Connection and
the hexagonal pattern.

Having explained the simple rules, the
article goes on to explain three possible rela-
tions between two cells: Contact [adjacent],
angle [bridge] and across—the two first be-
ing secure connections and the third one
unsecure. He offers the advice that playing
around the middle of the board is beneficial,
but certainly not necessary. An example of
a possible opening play is given.

Concluding the article is a problem
along with the promise that the following
days will bring new boards, new opening
moves and new problems. There was a prize
of 50 Danish kroner for the correct solution
to problem 1 in which white is to make a winning move.

Figure 3.2: Problem 1, The problem that appeared with the first article
on Hex on December 26, 1942. White moves once and makes a white win
inevitable.

3.2.2 December 27, 1942

Hein analyses the three smallest boards (1× 1 to 3× 3) to make the reader
realize some of the fundamental properties of Hex. On the third board, Hein
says, it is easy to find both winning and losing openings, but two winning
openings will result in the board being filled completely, provided that both
players play optimally. [These are the middle cells along the opponent’s
side.]
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On a board of 4 × 4 cells Hein suggests a game variant with a starting
position in which White occupies the two acute corners and Black one of
the middle cells. With white player moving next he can win, but not that
easily. The fifth board has potential for good play and difficult problems,
Hein says, and one such is problem 2.

Figure 3.3: Problem 2, White to move and win. Politiken, December 27,
1942.

3.2.3 December 28, 1942

This column describes how a game might begin. In figure 3.4 we notice a
very close opening play resulting in the best position for black with bold
numbers.

Figure 3.4: A possible opening of Hex, Politiken December 28, 1942.

Once more we have a problem, this time on a 6x6 board. As usual it is
white to move and win.

3.2.4 January 1, 1943

New Year’s Day was the day that Politiken announced the winner of the
competition from December 26 and also arranged a new one. The new
competition consisted simply in playing a game of Hex, enumerating the
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Figure 3.5: Problem 3, White to move and win. Politiken, December 28,
1942.

moves and sending it to Politiken. 100 Danish kroner would be awarded to
the best game—not stating any criteria.

In order to encourage new players the article states that: “Anyone can
play Polygon. You merely hit upon an empty cell and put your mark there.
It can be done with various degrees of talent, sure, but do you know if you
do not possess that particular ability?”

3.2.5 January 9, 1943

Figure 3.6: Counter-offensive
against an advancing series of
bridges: “any row can be
blocked.”

Apparently Politiken received quite a lot
of mail regarding Polygon. Many of the
letters described what the senders believed
were sure-fire strategies for the first player.
They would all open on the middle cell and
advance towards the sides by moving in a
straight line either horizontally or perpen-
dicular to the side.

Hein describes a counter-offensive to
this strategy which involves close play
eventually forcing a ladder [more on these
terms later]—and in case someone still has
a sure-fire strategy he wishes to see it. The
counter-offensive is illustrated in figure 3.6.

3.2.6 January 17, 1943

Some days only featured an advertisement
for Hex as this one picturing a couple ab-
sorbed in playing Hex in an air-raid shelter
and a woman from the civil defence telling
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Figure 3.7: An advertisement from Politiken January 17, 1943. A woman
from the civil defence sticks her head into an air-raid shelter saying: “Ladies
and Gentlemen, the All-Clear was sounded!!” Playing pads with fifty leaves
were sold in bookstores.
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them that the All-Clear was sounded. Thus, this advertisement is really a
little piece of documentation of life during the Occupation of Denmark.

The text in the middle begins: “Yes, one quite forgets one’s
surroundings—however disturbing they are—when one absorbes oneself in
a game of POLYGON.”

Politiken had made pads with hex boards and sold them through book-
stores all over Denmark. “There are 50 games in each pad, enough for a
party or a night in the air-raid shelter - should it come to that!”

3.2.7 January 20, 1943

The winner of the open prize contest was a student whose game is depicted
in figure 3.8. The column says that after a first rough grading there were
still more than a hundred good games to choose from.

The winning game is annotated and exhibits excellent play, including
most of the advice given in chapter 6.

Figure 3.8: The game that was declared the best game and won its partici-
pants 100 Danish kroner. Printed on January 20, 1943.

3.3 Princeton University

As mentioned above John Nash was a mathematics student at Princeton
University in the late forties. In the common room of “Fine Hall” (the
Mathematics Department building) students and teachers would meet be-
tween classes for learned discussions over a cup of tea. In a personal e-mail
Nash recollects that they played Go a lot and also some Chess and other
games. This informal environment inspired him to develop an outline of Hex
as an example of a game with a winning strategy for the first player.
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An older student, David Gale was among the first to see the game and
realised at once the entertainment value of the game. He created a board
that was available in the common room. In a personal e-mail Gale offers his
own description:

One morning Nash told me he had an example of a game which
he could prove was a first player win but could see no way of
finding winning strategies. He then described the checker board
version. I was intrigued and thought it was not only theoretically
interesting but might be fun to play. I spent most of the rest of
the day making the hexagonally paved board which then lived
for many years in the Fine Hall common room and became quite
popular.

The checker board version is Hex played on the vertices of a checker
board with diagonals in one direction added.

In his honour the game was known as Nash at Fine Hall. A popular but
probably apocryphal story claims that the game was played on the tiles of
the dormitory lavatories and therefore nicknamed ‘John’.

The game spread, at least to Yale University. Anatole Beck mentions
becoming familiar with the game before the Parker Brothers’ version was
released.[2]

Gale also tells how a few years after the Parker Brothers’ game was
marketed he received a call from Nash who accused him (wrongly) of double
crossing and having sold the Parker Brothers the game. How the Parker
Brothers actually discovered the game remains unknown.

3.4 Biography: Piet Hein

Piet Hein was born on December 16, 1905 (so this year he would have been
a hundred!) in Denmark. He was from a family of scholars and related to
the famous author Karen Blixen. Scientists and artists frequently visited
his family and the author Johannes V. Jensen is said to have inspired him
to write poetry.

After attending Metropolitanskolen, a prominent upper secondary school
in Copenhagen, he went to Sweden to become a painter at The Royal Uni-
versity College of Fine Arts. Before completing his studies he went back to
Copenhagen to study theoretical physics under Niels Bohr who was also a
friend of his family.

He did not graduate from The University of Copenhagen either, but com-
menced inventing technical wonders and games, writing poetry and agitating
for intercultural understanding and cooperation.

During the German occupation of Denmark 1940–1945 Piet Hein was
affiliated with the Danish newspaper Politiken. He mainly wrote small po-
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ems, in time developing a distinct style which he called ‘Grooks’. At least
in Denmark, these are what Hein is best known for.

Hein also contributed to architecture and design. He is particularly
known for his use of the Super Ellipse to solve a traffic problem in Stockholm.

A number of prizes were awarded to Hein, including The Alexander Gra-
ham Bell Silver Bell in 1968 and an honorary doctorate at Yale University
in 1972 and Odense University (now University of Southern Denmark) in
1991.

Piet Hein died on April 17, 1996, ninety years old.

3.5 Biography: John Forbes Nash

This biography is mainly based on Nasar and Nash in The Essential John
Nash.[16]

Nash was born in West Virginia, USA on June 13, 1928. His father,
John Nash senior was an electrical engineer and provided him with an en-
cyclopedia and gadgets to stimulate his scientific interest.

As a young schoolboy he showed great prowess in mathematics and chem-
istry and for a while actually studied chemistry but changed to mathematics
towards the end of his undergraduate study. In 1948 at the age of twenty,
Nash was accepted into Princeton University as a graduate student of math-
ematics with very good recommendations.

It took Nash only a little over a year to finish his 27 pages Ph.D. thesis
on non-cooperative games which was later to give him the Nobel Prize.

After receiving his degree in 1950 Nash went to Massachusetts Institute
of Technology to teach. Having married and expecting his second son, Nash
fell victim to a serious case of schizophrenia forcing him to leave his job and
a promising academic career for around 25 years.

In the meantime, his contributions to both game theory and geometry
had increased in significance and in 1994 he was awarded the Nobel Prize
in economics, with John C. Harsanyi and Reinhard Selten. Nash’s mental
condition had been improving, but the recognition apparently gave him a
final push back into ‘the real world’. Nash resumed his research at Princeton
and has since been working on a mathematical model for the expansion of
the universe as well as game theory and geometry.
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Chapter 4

Game Theory

Hex is an interesting game mathematically. That is the reason for beginning
this project in the first place. This is a central chapter that will make explicit
the conflict that keeps attracting mathematicians and the like.

Hex belongs to the category of finite two-player games, with no chance
events and complete information. In the same category we find Go, which
was played excessively at Princeton in the late forties, but also Bridg-It,
invented by David Gale, which is quite similar to Hex but solved in the gen-
eral case. Chess also belongs here (if we include the clause that a stalemate
equals a draw).

In any finite two-player game with complete information and no chance
events (deterministic) there is an optimum strategy.[7] The strategy consists
in maximising respectively minimising the values assigned to each game
state. The value v of game state Ti is assigned recursively (Ti is followed by
one or more possible Ti+1):

• v(Ti) = 1 if player A has won

• v(Ti) = −1 if player B has won

• v(Ti) = max(v(Ti+1)) if player A to move

• v(Ti) = min(v(Ti+1)) if player B to move

With this assignment of values, obviously player B must minimise on
every move and player A maximise. In many deterministic games the result
of the optimum strategy for a player is a loss. As we shall see in this chapter
the player to move second cannot obtain anything better if the first player
follows his optimum strategy.

Knowing the optimum strategy potentially ruins a game. We still play
them, though, because for large games this assignment of values is only
possible in principle and as we shall see, the actual winning strategy in Hex
remains hidden.
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Nash used this knowledge of general game theory when designing Hex as
a game with a winning strategy for the first player. We shall see his outline
of a proof of the property made explicit in this chapter.

4.1 The existence of a winning strategy

It was probably discovered by several mathematicians independently that
there is a winning strategy and that it belongs to the first player. According
to Gardner, Nash outlined a proof in 1949 and Hein’s own writings suggest
that he also knew this.[11] Hein’s implicit argument is that since the play-
ers’ connections cannot both be blocked locally (in a triple of cells), they
cannot both be blocked globally either.[15, 42-12-26] It seems, however, that
a crucial part of the proof was not published before 1969 by Anatole Beck
in [2], namely the no-draw property of the Hex board.

This section deals with Nash’s sketch proof as printed in [11] and develops
certain aspects further:

1. Either the first or second player must win, therefore there must be a
winning strategy for either the first or second player.

2. Let us assume that the second player has a winning strategy.

3. The first player can now adopt the following defense. He first makes
an arbitrary move. Thereafter he plays the winning second-player
strategy assumed above. In short, he becomes the second player, but
with an extra piece placed somewhere on the board. [This argument
is usually referred to as ‘strategy stealing’.]

4. This extra piece cannot interfere with the first player’s imitation of
the winning strategy, for an extra piece is always an asset and never
a handicap. Therefore the first player can win.

5. Since we have now contradicted our assumption that there is a winning
strategy for the second player, we are forced to drop this assumption.

6. Consequently there must be a winning strategy for the first player.

In the following I shall expand these arguments and give formal proof
where necessary. 1. is treated in the section immediately below, 3. and 4. in
the next. The rest is a simple logical exercise.
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4.1.1 One winner

Ad. 1.

It is a key property of Hex that there will always be exactly one winner as
I shall prove here. We will initially state the fact in the most general form
as a lemma and from that deduce the wanted.

Lemma 1 A Hex game cannot end in a draw.

In order to prove this lemma, it is necessary to realise that any game
has at most three possible outcomes:

• Either one player wins and the other does not;

• or both players win;

• or none of the players win.

It is a matter of definition specific to the game what the difference be-
tween the second and the third outcome is—often there is none. In Hex it
is quite straight-forward that a win for a player equals having established a
chain connecting his two sides. Thus ‘both players win’ and ‘no player wins’
translates as ‘both players connect their sides’ and ‘no player connects his
sides’.

Lemma 1 is equivalent to the statement that no valid distribution of
pieces on a Hex board contains connecting chains in both directions and
all valid completed boards contain at least one connecting chain. Valid
means any distribution that can be obtained during play, but in fact any
distribution has this property.

It is easy to convince oneself of the property—being a consequence of
the impossibility of a planar complete graph with five vertices and the Four-
Colour Theorem—but a proof is less trivial. This proof is a version similar
to the one in [10] but building more on graph theory.

Proof The proof has two parts: The players cannot both win and the
players cannot both lose.

The players cannot both win since, as soon as one of the players wins,
i.e. completes the necessary connecting chain, the game ends and the other
player will not be allowed another move to complete his connection.

For the other part of the proof we shall consider the Hex board as a
planar graph, each vertex being a point in which the corners of two or three
tiles meet, and all being connected in the same way as on the board. The
degree of all vertices is ≤ 3. Notice how, along the sides of the board, the
hexagonal structure is scrambled. The corners are considered to constitute
vertices as well because this is where the players’ homelands meet.
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Figure 4.1: A 4× 4 Hex board seen as the planar graph G.

Figure 4.2: Each
triple of cells con-
verts to two edges
in G′—or none.

Let G be the planar 2-connected graph with all
vertices of degree 2 or 3 (outer and inner vertices) and
consider all cells of the original Hex board occupied as
in a finished game. We can now create a subgraph G′

of G by colouring all edges lying between two differ-
ently occupied tiles on the Hex board.

All inner vertices in G will be of degree 0 or 2 in
G′. Either the three surrounding cells share the same
colour or one of the three has a different colour as in
Figure 4.2. In the first case the vertex will be of degree 0, in the second
2. Most of the outer vertices in G will have degree 0 as their surrounding
areas are of the same colour—only the four vertices at the corners will be of
degree 1. This is true for any size of the board (and corresponding graph)
and for any distribution of pieces.

Now G′ is a subgraph of G with all vertices of degree ≤ 2. It is a
well-established fact of graph theory (König’s theorem) that G′ will consist
purely of disjoint simple cycles, simple paths and isolated points. Since we
have exactly four vertices of degree 1 there must be exactly two simple paths
and as they cannot intersect in a planar graph, these must each connect one
of East/West to one of North/South (and not the same).

Figure 4.3: G′ is a subgraph of G created by colouring all edges lying between
different colours on our corresponding Hex board.

More formally, if the two lines connect North to South and East to West
then along with the sides of the board and a fifth vertex, added outside the
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board and connected to each of the corners, they will constitute a planar
version of K5. This is where Hein realised that both players succeeding
in connecting their homelands would imply a disproof of the Four-Colour
Conjecture.

Assume that West is connected to South as is the case in figure 4.3.
Following the line from West to South will define a chain on the left-hand
side connecting the two sides belonging to black. Since the paths cannot
intersect, and thus not touch, the minimum connecting chain will lie
between the two paths. This will also be the case when West connects to
North. �

The proof can be generalised to account for any board as long as its graph
representation is a 2-connected graph with all vertices of degree ≤ 3. This
proves Hein to be right in using impossible local blocking as an argument
for impossible global blocking.

I demonstrated quickly and easily that both players cannot win, exploit-
ing a rule that is entirely contingent. In fact the lemma would also be true
in a game that only finishes when the board is full. This also follows easily
from the necessary properties of the subgraph G′ examined above. A simple
path between two corners effectively blocks all possible connections.

Now, considering that any game of Hex is played on a board with n× n
cells, keeping in mind that no pieces can be removed, it is quite trivial that
all games will consist of at most n2 moves. Since we have just shown that
in the case of a completed board there must be exactly one winner this
will apply to any finished game—as a game does not finish before a winning
chain is established. This leads to the formulation of the following corollary:

Corollary 2 Either the first or second player must win, but not both.

The property that this corollary proves was one of Hein’s characteristics
of a good game as described in section 3.1. The assumption that G contains
no vertex of degree > 3 is necessary and makes it clear why Hex cannot be
played (satisfactorily) on a squared board.

Remark We have now established that exactly one of the players will
win any game of Hex. From this fact follows the existence of a winning
strategy, keeping in mind that Hex is a game of complete information
and no chance events, in principle fully determinable. This is the implicit
statement of 1. in Nash’s proof above.

The Brouwer Fixed-Point Theorem

The lemma and corollary just proven appear to have mathematical conse-
quences. In The Game of Hex and the Brouwer Fixed-Point Theorem David
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Gale has shown the property of Hex to be equivalent to a fundamental the-
orem of algebraic topology, namely the Brouwer Fixed-Point Theorem.[10]
I shall not examine this fact in depth but merely remind of its content.

The Brouwer Fixed-Point Theorem says that for any continuous mapping
f : I2 → I2 from the unit square onto itself there exists an x ∈ I2 such that
f(x) = x.

The theorem also comes in a generalised form and by equivalence Hex
must too. However, a generalisation of Hex to more dimensions and more
players will result in a poor game as it will be extremely difficult to block
each other—more so for every extra dimension.

4.1.2 The strategy stealing argument

Ad. 3.

The strategy stealing argument was developed for Hex by John Nash. It
is obviously applicable to many symmetric two-player games but must be
accompanied by the rest of the arguments above in order to prove anything
at all about the existence of a winning strategy.

The argument is that if the second player has a winning strategy S,
so will the first player. He can play his first move arbitrarily and in the
rest of the game pretend he is the second player—assuming S. In case this
strategy requires occupying the cell that was occupied in the first arbitrary
move, the player will make another arbitrary move and continue along the
lines of S. The same applies to subsequent cases of cells being already
occupied.

Ad. 4.

A necessary property for the validity of the strategy stealing argument,
is that a piece can never be a disadvantage. This property is intrinsic to Hex
as a game of laying out stepping stones between two shores. In Hex only the
best (minimal) connection, finished or unfinished, between a player’s two
sides plays a role. An ‘extra’ piece can be added and make this connection
shorter in which case the piece is an advantage; or the piece can make no
difference to the number of pieces in the minimal connection, in which case
it is not a disadvantage. An extra piece can never be disadvantageous.

It is clear why the second player cannot simply steal the first player’s
winning strategy: In case the cell is already occupied by the first move,
which he ignored in order to pretend to be the first player, the strategy fails
because it is not his piece.

Considering that a winning strategy offers exactly a guaranteed win, the
strategy stealing argument makes a contradiction to corollary 2 by implying
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that both players must have a winning strategy and the assumption that
the second player has a winning strategy must be false.

4.1.3 First player wins

Ad. 6.

Having made explicit the arguments of the proof above we can now state in
a formal way the following:

Theorem 3 For any n × n game of Hex the first player has a winning
strategy.

We notice (regretfully) that the theorem is only one of existence and
makes no promise of a practical construction of the winning strategy. In
the next chapter we shall see that there is very little hope of discovering a
winning strategy in the general case. We can only hope to develop winning
strategies for small boards—so far this has been accomplished for boards up
to 9× 9.
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Chapter 5

The Complexity of Hex

We have just seen above that Hex does have a winning strategy for the first
player on any board size, but that we have no idea what it looks like. We
can say further that we cannot even expect to discover it. In this section I
shall present further evidence for this discouraging statement.

We are looking for a general winning strategy, i.e. a strategy applicable
to any board size. But even finding a winning strategy for one board is a
tremendous task. We begin this chapter by doing some calculations as to
how long time it would take to find a solution to some of the smaller boards.

The second and major part of the chapter deals with complexity theory
and the categorisation of Hex in the hierarchy of hard problems. This theory
gives us reason to believe that we will never discover a general winning
strategy.

5.1 Solving Hex with brute force

There is a solution to Hex and in principle it is directly accessible to us.
One method for finding a winning strategy is in fact quite straight-forward:
Sit down and start playing all possible games. Using some automation, this
should not be too hard, should it? Indeed it is. Let us try and do some
calculations as to how long it would take.

Being a quite systematic person, I would begin on an n × n board by
numbering the cells from 1 to n2 and playing them in numerical order,
the first complete game being [1, 2, 3, . . . , n2 − 2, n2 − 1, n2] and the next
[1, 2, 3, . . . , n2 − 2, n2, n2 − 1] and so on. This is easily seen to create n2!
games to play.

However, we can ignore quite a lot of games:

1. The games that begin [1, 2, 3, 4, 5 . . .] are the same as those that begin
[3, 2, 1, 4, 5 . . .].

2. Quite a lot of the games would finish before the board was full and we

29
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can ignore the rest of the moves in these. A rough (and optimistic)
estimate would be that an average game uses half the available cells.

3. Finally, half the games are covered by rotation.

These reductions amount to a total number of games that is the number
of ways one player can occupy a quarter of the cells times the number of
ways the other player can occupy another quarter of cells divided by two:(

n2

1
4n2

)
·
(

3
4n2

1
4n2

)
2

If I work efficiently and ignore interruptive bodily needs, I can make one
move every second of the day. Each game will take in average n2/2 seconds
to play and finding the full solution for a board of size n× n thus takes

n2! ·
(

3
4n2

)
! · n2(

1
4n2

)
! ·

(
3
4n2

)
! ·

(
1
4n2

)
! ·

(
1
2n2

)
! · 4

seconds.
Solving the 2×2 board will take 12 seconds. 3×3 should be about 2,400

seconds. These have already been solved, so I would much rather solve the
standard board of 11 × 11 cells. I should be able to do this in only 1054

seconds—or 3 · 1046 years. In comparison, our solar system is believed to
have existed in 4.5 billion years.

Obviously, my calculations were to be done by hand and a computer is
much faster than I am—and they can in fact even work all day and night. So
let us cut down my estimates with a factor of one million or even a billion.
No matter how many of today’s computers we combine, they will not be
able to solve standard size Hex in a reasonable period of time.

These calculations deal with only specific sizes of Hex and offer no hints
to a general solution. Solving the next size would take considerably longer
and apparently, there is no upper limit to how long it would take to solve
all boards using this approach.

5.2 Complexity

When talking about complexity in mathematics or just problem-solving in
general, there is always the first question of whether or not a solution to
the problem we are discussing ultimately does exist. In many cases, when
a solution is not obvious, it is possible to prove that there are solutions,
even if they may be extremely difficult to find. In other cases we can prove
problems undecidable, and of course there are those that constantly avoid
classification as decidable or undecidable.
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An important distinction is between truly undecidable problems and
those that are only “intractable”. According to Garey and Johnson, Alan
Turing was one of the first people to prove a problem type undecidable.[13]
In the thirties he showed that it is truly undecidable for a general algorithm
and input to it whether or not the algorithm in question will run indefinitely
or it will halt after a finite number of steps. In order to make this a precise
mathematical theorem, general algorithm is to be interpreted as an abstract
Turing machine as defined by Alan Turing, constituting the standard model
for the concept ‘algorithm’.

Hex, being a finite n× n game, is in principle solvable, as shown in the
previous section, but is very likely intractable. Intractable means that a
problem type cannot possibly be solved by any algorithm using only poly-
nomial time. Hex has been partly solved for boards up to 9× 9 but in this
context we are only truly interested in a general solution. Solved means
that for any given board position it is known which one of the players has a
winning strategy—and phrasing the problem type properly, the solution will
also reveal the winning strategy. Thus a solution is an algorithm (running
in polynomial time) that will reveal a winning move for any board size and
position.

We shall now differentiate our concept of intractability slightly by intro-
ducing different complexity classes, each describing computational needs for
solving their member problem types. When solving problems there are ul-
timately two resources that are in limited stock: time and space.

In the following I shall discuss briefly a small part of complexity theory,
hopefully without things becoming too technical. An important feature of
this theory is that problems and questions are usually rephrased into decision
problems, i.e. questions that can be answered with a ‘yes’ or a ‘no’. This
makes it possible to transform problems into each other and compare them.

In order to make clear what question we are trying to solve (or rather,
trying to show intractable) let us first phrase Hex explicitly as a problem
type:

Problem type Hex
Given A partially filled (possibly empty) n × n Hex-

board and an empty position p.
Question Is playing at p part of any winning strategy?

The question may be asked for the player in turn. In case of a ‘no’ the
player should ask the question again with a new position until all empty
cells have resulted in negative answers. In that case, clearly, the opponent
has a winning strategy regardless of the player’s move.

It is possible to answer the question—and in turn to discover a winning
strategy—for any board size in finite time. However, the time required for
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a solution to a given board seems to grow more than polynomially with the
problem size (i.e. board size).

In the rest of this chapter, we shall describe the complexity theory to
make probable that our problem is intractable — and prove it to be at least
as difficult as many other hard (yet unsolved) problems.

5.2.1 Classes P and NP

In section 5.1 we made some calculations showing that an overwhelming
amount of time is needed in order to solve just the standard version of Hex
with the only known approach, which is by exhaustion. The amount grows
exponentially with the board size. Thus, time is really an issue here.

In the 1960s, J. Edmonds introduced the notion of a good algorithm
as being one that produces an answer in at most polynomial time, relative
to the problem size.[13] For Hex the problem size is the number n of cells
on the board—usually we denote the number of cells along the edge by n
but for computational purposes we prefer the complete number of cells; any
confusion of the two makes no practical difference anyhow since being bound
by a polynomial in n2 is equivalent to being bound by a polynomial in n. In
the following, unless otherwise stated, when I mention a solution to Hex, in
fact I mean a good solution, i.e. a polynomial time algorithm that answers
our question about a winning strategy for the player in turn.

Along with this definition follows a complexity class P (for polynomial)
of problem types which are solvable with good algorithms. For the time
being, no good algorithm is known to solve Hex, and the same goes for a
long list of other problem types.

Sometimes it is possible to guess a solution to a hard problem—or it
might even be revealed in a vision or dream—and in some of these cases the
solution will be verifiable in polynomial time. For this reason we use NP
(for non-deterministic polynomial, non-deterministic referring to the source
of the certificate) to denote the complexity class of problem types that, in
case of a positive answer, have a certificate that we can verify with a good
algorithm.

A certificate is a guess at a specific strategy that proves the answer to
the question to be ‘yes’. It must be phrased as new input and an algo-
rithm describing what to do. Apparently, in order to verify a strategy in
Hex we will need to confront it with all possible opposition (which exceeds
polynomiality).

Problem types in P are, for obvious reasons, easily verifiable, even with
an empty certificate, and thus all members of P belong to NP. It is possible
that the existence of a good algorithm for verifying certificates implies the
existence of a good algorithm for solving a problem, but it is as yet undecided
whether P = NP or not. In fact, there is currently a prize of $1,000,000 for
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a proof of the equality or its negation. General belief is that P is a proper
subset of NP.

A consequence of the lacking answer to the question P = NP is that
there are problems in NP to which we in fact do not know whether a good
solution exists or not. One thing we do know about a certain group of
these, however, is that if there is a polynomial solution to just one of them,
then we can find polynomial solutions to all problems in NP. This fam-
ily is called the NP-complete problems. A problem is determined to be
NP-complete if it is possible to reduce all problems in NP to it with a poly-
nomial transformation—which implies that transforming an already known
NP-complete problem into a problem in NP will prove it NP-complete.

It has been shown that Hex is at least as hard as any NP-complete
problem, for which we use the term NP-hard. If Hex is in NP, it will
thus be NP-complete. In the following section we shall discover a class of
problems that are probably harder than all NP-complete problems; a class
in which we also find Hex.

5.2.2 PSPACE

Now, with the knowledge available at the moment, it is impossible to solve
Hex for large board sizes because there simply is not enough time available.
As mentioned above, another limited resource is space. This is to be un-
derstood quite literally as the space taken up by computer memory or even
writing paper. Since both humans and computers can only manage simple
calculations, we will have to write down intermediate results.

According to Kevin O’Gorman’s calculations, an extremely efficient
storage of the game tree for a 10 × 10 board will require a computer of
1 km3, not considering wiring and cooling.[http://hex.kosmanor.com/hex-
bin/notes.html] This huge number comes from an optimistic estimate of the
number of possible board positions to be 1039, and storing only one bit
per position in a cube makes it 1013 bits along each edge. Now, utilising
the smallest imaginable storing, non-moving, stacked hydrogen atoms, each
about 10−10 metres; if each atom carries one bit of information we end up
with this giant cube of 1 km3. And this was only the game tree of one
specific (and small) board size, mind you.

We can, however, solve Hex without storing the entire game tree at once.
With a simple minimax search (which will be described in more detail later)
we can assign each node, representing a board position, a value according to
which one of the players will win, only storing the calculated values closest to
the root and thus we only need a few more placeholders than the maximum
depth of the game tree, equal to the maximum number of moves n2 in a
game. The class of problem types solvable with only limited (i.e. polynomial)
storage need is called PSPACE for obvious reasons.

Problem types in both P and NP must necessarily belong to PSPACE,
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since even if we store all steps of a polynomial time algorithm at once, we
cannot use more than polynomial space in polynomial time. Thus follows
the relation P ⊆ NP ⊆ PSPACE and it is strongly believed, though not
proven, that both inclusions are proper.

The characterization of Hex as NP-hard can be taken a step further; Hex
is actually PSPACE-complete and from this follows that if Hex also belongs
to NP or P then NP = PSPACE respectively P = PSPACE. This does not
prove that Hex is in fact intractable, but it shows that all futile efforts to
solve other PSPACE-complete problems were also implicitly directed at Hex
and makes intractability quite likely.

5.2.3 Hex is PSPACE-complete

Stefan Reisch gives a proof of the PSPACE-completeness of Hex in his article
Hex ist PSPACE-vollständig.[19] I shall not reproduce it here but give a short
outline along with a few examples.

A few years earlier Simon Even and R. E. Tarjan showed in [9] that a
generalised version of Hex, known as The Shannon Switching Game played
on vertices, is PSPACE-complete. This proof is usually the only one men-
tioned in relation to Hex—because the more specific proof of Reisch is only
available in German, I assume.

The general method for proving any problem to belong to a certain com-
plexity class is to transform another problem from the class to the problem
in question using a polynomial transformation and so that a solution to the
original problem is directly translatable to a solution to the other. QBF
(quantified Boolean formula) is a fundamental PSPACE-complete problem
which is often used as basis for these transformations.

Reisch’s proof establishes a method for the transformation of any QBF
to an equivalent situation in Hex, which can be carried out in polyno-
mial time via a number of simple transformations. This proves Hex to be
PSPACE-hard and along with the knowledge from above, that Hex belongs
to PSPACE, it must also be PSPACE-complete.

A quantified Boolean formula is a logical expression of the form
Q1x1Q2x2 . . . QmxmF in which F is a well-formed formula in conjunctive
normal form, xi is a Boolean variable and Qi ∈ {∃,∀} is an existential or a
universal quantifier. A QBF may for example be the following:

∃x1∀x2∃x3 : (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (¬x2 ∨ ¬x3).

The formula is in standard logical notation and reads: “there exists a
value of x1 such that for all values of x2 there exists a value of x3 such that
either x1 or x2 is true and either x2 or x3 is true and either the negation
of x2 or the negation of x3 is true”. There are several assignments of truth
values to these variables that make the formula true, e.g. x1 = x2 = true
and x3 = false.
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Reisch transforms a general QBF to Hex via two intermediate problem
types in the form of games following this schedule:

1. QBF −→ Geography

2. Geography −→ Graph-Hex

3. Graph-Hex −→ Hex

Geography is originally a game in which players alternately mention
names of locations with the only rule that a new location must begin with the
letter by which the previous location ended. The game may be formulated
as a two-player game on a directed graph in which the players alternately
colour a vertex connected to the last coloured vertex by an edge; the player
who is not able to colour a vertex loses. The formal problem type is this:

Problem type Geography
Given A directed, partially coloured graph and a vertex

v directly connected to the last coloured vertex.
Question Is playing at v part of any winning strategy?

Graph-Hex is equivalent to the Hex we know, only it is played on the
vertices of an undirected, planar graph with two distinct vertices s and t. In
order to win, the white player must connect the two by a path containing
only vertices coloured in his colour—black player wins if he prevents white
player from doing so. The players alternately colour one uncoloured vertex.

Problem type Graph-Hex
Given An undirected, planar, partially coloured

Graph-Hex graph and an uncoloured vertex v.
Question Is playing at v part of any winning strategy?

The resemblance of the problem types described is great and the object
of the proof is to show that a solution to one is directly translatable to
another.

QBF −→ Geography: The QBF’s consist of two parts, namely the
quantified variables and the clauses. We create a graph from these by con-
necting the figures 5.1 according to the quantifier of each variable. The
left diamond corresponds to an existential quantifier and the right one to a
universal quantifier.

The Geography graph is constituted by a starting vertex s, a chain of
‘variable diamonds’ and a vertex t. To t we attach a vertex yi for each
disjunctive clause of the formula and further connect these to the vertices
representing the opposite truth assignments of the variables in the clauses.

In the cases where a vertex has degree four or more, we replace it by a
subgraph so that every vertex has degree ≤ 3 and yet the game properties
of the full graph remain unchanged.
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Figure 5.1: Geography subgraphs corresponding to an existentially quan-
tified variable and a universally quantified variable in a QBF. The named
vertices represent the possible truth values.

Figure 5.2: ∃x1∀x2∃x3 : (x2 ∨ ¬x3) ∧ (x1 ∨ x3).

The result is a bipartite directed graph with all vertices of degree ≤ 3
that is almost planar. Only edges going from a yi disrupt the planarity and
we insert subgraphs at intersections that preserve the relationship with the
QBF but render the Geography graph planar.

The resulting game graph has a winning strategy for the first player
if and only if there is a truth assignment to the variables of the QBF that
makes it true. In the example of figure 5.2 x1 = true and x3 = false will make
the QBF true and also indicates a winning strategy for the corresponding
Geography game, namely for the first player to visit both x1 and ¬x3 on the
passage from left to right.

The transformation uses little more than one step for each variable and
disjunctive clause and so can be carried out in at most polynomial time,
implying that since QBF is PSPACE-complete, determining a winner in
Geography is PSPACE-hard.

Geography −→ Graph-Hex: Graph-Hex is played on a graph with
two distinct vertices, s and t. White plays to connect the two and black
to prevent it. The graph is planar and undirected and we must of course
preserve the winning strategy from the Geography game for the success of
the proof.



5.2. COMPLEXITY 37

Again, a small number of distinct subgraphs are defined and the ver-
tices of the Geography graph are replaced by these according to the number
of incoming and outgoing edges. Most of the vertices v of the Geogra-
phy graph have degree 3, that is either indeg(v) = 1, outdeg(v) = 2 or
indeg(v) = 2, outdeg(v) = 1. These vertices are replaced by elementary
graphs according to whether v ‘belongs’ to white or black player (the player
who can move at it).

Otherwise the vertices have indeg(v) = outdeg(v) = 1 and thus have
no other effect on the game than to shift the initiative from one player to
the other determining who gets to choose direction on a following vertex of
outdeg(v) = 2. In Graph-Hex, these will be ignored since vertices can be
selected arbitrarily in this game. Only s and t will remain unchanged.

I will not go into detail about the subgraphs except show one of them.
Figure 5.3 is a subgraph of a Graph-Hex graph to represent a vertex in a
Geography graph.

Figure 5.3: A “white choice graph”
that replaces a Geography vertex v
with indeg(v) = 1, outdeg(v) = 2 and
in which the white player can choose
to connect the top to either the right
or the left side. The bottom repre-
sents a connection to both sides which
black can prevent.

Once more, the complete result
is an almost planar graph and us-
ing somewhat similar replacements
as before, we get an undirected, pla-
nar graph with all vertices of degree
≤ 3.

Graph-Hex −→ Hex:
Graph-Hex is played on a graph
consisting of vertices and edges and
with a white player perspective. In
transforming it to Hex we replace
edges with lines of white stones
flanked by black stones. Empty
vertices are replaced by empty
cells on the Hex board surrounded
by occupied cells, whose colour
is determined by the degree of
the vertex. Occupied vertices are
replaced by corresponding cells.

This transformation renders a
quite large Hex position even when
the initial QBF has only few vari-
ables and clauses. This is due to
the transformation process in which
we twice replaced singletons by sub-
graphs.

The constructive method shown here proves that any QBF can be trans-
formed into a Hex position. Thus, solving Hex in general is at least as
hard as solving QBF in general and so Hex is PSPACE-hard. With Hex
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Figure 5.4: The transformation of the white choice graph in figure 5.3 to a
Hex position.

belonging to PSPACE, as shown above, the problem type of determining
whether a given move on a given Hex board is part of a winning strategy is
PSPACE-complete.



Chapter 6

How to play Hex

This is a text mainly on the history and mathematics of Hex. However,
games are there to be played and fortunately the mathematical investiga-
tions are useful for the Hex player. In this chapter I will do my best to pass
on some advice on the playing of Hex, though my own skills are far from
advanced.

It is extremely difficult to give concise and universal directions and what
I am able to say here is in serious danger of being obvious or unapplicable
because of generality. This difficulty is reflected in that of creating a strong
Hex playing program. When I will try just the same, it is because a thesis
on Hex would not be complete without it and because there are some truly
useful tips—mainly some that are extensions of the research approaches
described in chapter 8.

When playing Hex, either as a human being or a computer, there are two
scopes that must be balanced in order to attain good play. A good player
must be able to block an advancing chain and establish his own connection
in the close play, but it is equally important to look ahead and prepare
traps and escapes. For the computer players there is a very concrete task
in deciding the ratio in which to perform game tree analysis and applying
more general move evaluations.

Thus, I have divided the chapter into a section on some structural ob-
servations and some more general issues to consider.

Naturally, a comprehensive knowledge of the mathematics and the tricks
I describe in this chapter is not enough to become a good player. It requires
quite a lot of training and perhaps even flair for a player to be able to apply
all this advice and ultimately Hex (and many games) is all about responding
to the opponent’s moves.

Most of the observations in this chapter are inspired by Cameron
Browne’s Hex Strategy [5], random ideas and hints on the internet and not
least by real games at the internet game site Little Golem1.

1Little Golem offers Hex on 13 × 13 and 19 × 19 as well as many other games. Its
address is http://littlegolem.net
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6.1 Recognising structures

Hex, being a tree game, can be played perfectly with a sufficiently large
capacity for examining the branches, i.e. the possible lines of play. As has
already been elaborated on above, however, it is not possible to perform
very deep analysis because of the large branching factor which implies that
the workload increases immensely with every deeper level searched.

There are a few structures that are immediately seen to occur again
and again in every game. We refer to these as templates because they
can be applied all over the board. They consist of a specific position and
unambiguous instructions as to responses to the opponent’s intrusion into
them. Templates establish a ‘virtual’ connection between two (groups of)
possibly occupied cells, one of them perhaps being a side. The point is
that the connection can be as good as solid and yet unrealised. Knowing
and using these can save a lot of calculations—whether you’re a man or a
machine—and allow a player to look further ahead.

An important aspect of Hex is to respond to the opponent’s moves and to
be able to block his attempts at connecting central groups of cells. Blocking
is not easily made subject to templates because one has to consider an entire
side of the board that the opponent is threatening to connect to. Yet there
are a number of similarities and, all other things being equal, we are still
able to give advice.

Bridge moves The strongest connection between two cells is obviously
the completed one. But almost as strong is the connection that is realisable
no matter what move the opponent makes. We shall call the simplest version
of this virtual connection a bridge because it rests on two cells and spans
another pair.

Figure 6.1: A bridge. There are two possible connections between the ‘pil-
lars’ of the bridge.

It is almost as strong a connection as the one between adjacent cells but
spans quite a lot more. This makes the bridge the most fundamental and
important local structure to know and recognise.

Edge templates When play approaches the edge, a small number of
edge templates are extremely efficient. The smallest of these is a version
of the bridge in which one end cell is part of the homeland. The templates
consist of a small number of cells and a set of instructions on how to respond
to the opponent’s intrusion into the template.
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Figure 6.2: Edge templates connecting line three to the edge. Both contain
a left and a right part, if the opponent intrudes into one part the player
must respond on the pivot point in the other. Notice that the template on
the right surrounds an empty cell which may as well be occupied by the
opponent.

On the standard board we know of edge templates up to five rows from
the edge. Characterising the templates by their distance from the side, the
ones furthest away require more space but prove to be equially strong tools.
The simplest row three template requires four unoccupied cells along the
edge and the row four and five templates require seven and ten unoccupied
cells respectively. Obviously there exists edge templates of arbitrary distance
to the edge, however, the board may not be big enough to contain them.

Figure 6.3: The cell position necessary for the minimum row five template.
The response instructions are non-trivial and include templates for the first
four rows.

All templates can be reflected.
Ladder Hein referred to this structure as “rubbing shoulders” because

it occurs when a player pushes towards his side and the opponent has no
other option but force him along it.[15, 42-12-27] The advancing player can
turn the ladder to move in another direction but not force a breakthrough.

When the ladder is moving in the same direction as one of the edges,
continued long enough it will connect the other two edges. It can be quite
difficult to escape from a ladder once begun unless it meets already occupied
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Figure 6.4: The ladder forms along the arrow because the white player
cannot reach the edge but keeps pressing towards it. All Black’s moves are
forced.

cells on its way—and this is the key to its use. These cells are known as
ladder escapes and should be played early, threatening to connect another
group of cells to the side cf. double threats.

The ladder is in fact a frequently used and quite strong tool. If it is
planned well, it is able to force quite a lot of territory into a player’s pos-
session.

Blocking The hexagonal nature of Hex means that an obstruction
cannot simply be placed directly in front of an advancing chain—one can
always move around it unless it is being planned a few moves ahead. The
classic defense against the bridge move is to block three cells away as shown
by the move 2 in figure 6.5 as this gives the blocker two moves before the
opponent gets that far.

Figure 6.5: Neither the move directly towards the edge (a) nor the move
towards the corner (b) manage to pass the classic bridge defense. In the
latter case a ladder will form along the second row, moving left.

Hein described a strategy for blocking in Politiken as a response to nu-
merous letters that claimed to have found a winning strategy.[15, 43-01-09]
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6.2 General tips

Using the templates and knowledge from the previous section ensures play
at an intermediate level. In order to attain even better play it is highly
necessary to plan ahead and notice the traps and openings that the opponent
provides.

Obviously this is extremely difficult and relies heavily on intuition and is
thus the area that causes Hex programmers great difficulties. Formulating
a subtle threat as something which can be discovered by an algorithm is not
easy.

The first artificial Hex player was, however, based on general connectiv-
ity rather than close, structural play. Claude Shannon’s Resistor Network
measured electrical current in a net of wires, recommending the player to
strengthen saddlepoints. The result was a fairly good Hex player which was
easily trapped in the close play.

Modern Hex programs use some degree of tree search and thus have an
error free close play but are more easily trapped by good positional play.

This section will feature some general observations that are not easily
implemented but good to keep in mind during play.

Focus on regions It is impossible to maintain a plan for the entire
Hex board at once and thus it can be a good idea to divide it into a few
regions, concentrating on one at a time. If a virtual connection is secured
from a cell to the edge, there is no reason to consider moves in that region
as long as the opponent does not interfere with it.

Also, the importance of each region must be estimated in order to fo-
cus attention. One should often respond close to the opponent’s last move
but occasionally a region is lost and another suddenly becomes the most
important.

As the game progresses and territories are won or lost, it is necessary to
adapt the territorial divisions and change focus accordingly. It is all about
distributing the available computational power most efficiently.

Claim territory Along the lines of the previous advice, it is important
to claim the unoccupied regions by blocking the opponent’s connection to
them. Especially during the opening play, it is important to spread out
the stones so as to occupy great lands while also limiting the opponent’s
territories.

Close to the edge it is possible to claim quite a lot of empty cells. Edge
templates are good examples of regions claimed. Claiming the acute corners
also often proves crucial as ladders are likely to form along edges towards
these corners. Stones in these regions will often work as ladder escapes.

Double threat Your opponent may also have read this advice and
will know how to block your advancing connection. In order to force the
connection past a well performed block there must be another connection
possible. A good move threatening to form a connection always has an
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alternative connection in case the opponent should interfere with the original
plan.

The bridge is the minimal example of the double threat. In a larger and
more efficient scale, a ladder escape should also threaten to connect on its
own. What is important is that the two threats do not overlap, as this will
make it vulnerable.

Forcing moves As seen for instance in the ladder structure, a game
of Hex has a lot of moves that are necessary replies because if they are not
made, the opponent can win immediately.

Intrusion into a bridge is an obvious instance of a forcing move. The
player must reply on the bridge’s remaining empty cell to avoid losing the
connection. Edge templates also consist of a number of forcing moves.

Forcing moves can be used to a player’s advantage, but one must be
cautious. When used well a forcing move will be part of a double threat,
win important territory or secure the escape of a ladder. A player subject
to a forcing move will have two possibilities: To respond to the forcing move
and thus allow the opponent to dictate the game or to leave the vulnerable
connection open in order to perform a more important move—possibly a
move that will force the opponent and thus postpone (or avoid entirely) the
destruction of the original connection.

It is often a good idea to desist from forcing a move because it can result
in a virtual connection being consolidated. In that case, a player should
try to force the opponent to make his virtual connections overlap so as to
intrude into two or more of these in a single move.

Play close Obviously, it is no use establishing a connection spanning
most of the board if the opponent is able to push through a small hole. It
is always important to pay attention to where the opponent last played and
block his attempts at a connection.

Every move the opponent makes will serve the main purpose of securing
a connection and/or weakening yours. In any case, a good move poses an
immediate threat that must be responded to.

Of course, in some cases a move has greater consequences in completely
different parts of the board than in the immediate proximity. Also, the
region that the opponent just played in may not be your most important
region.

Cameron Browne concludes his book on Hex strategy with this moral
that I will also adopt:

There is no easy solution to Hex. Between two otherwise equally
skilled opponents, the player who is willing to work harder
and perform the more thorough lookahead will usually win the
game.[5]



Chapter 7

Variants

Piet Hein asks in one of his unpublished manuscripts:

[...]why must the game look just like that? [...] Is it not quite
arbitrary. . . ? Could it not just as well. . . ? Why must I adhere
to such an arbitrary practice?[sec. B.2.2]

and provides the answer himself: “It is not arbitrary. By its very idea
this game could look no other way”.[ibid.]

However, Hein is not entirely correct in his conclusive statement. He did
make a few decisions (however natural) in the invention and in this chapter
we shall experiment with a variation of these. Changing the game in different
aspects will help us realise what the game is and what it is not. We will
modify parameters little by little and examine when the game is no longer
Hex, which properties hold and perhaps discover new entirely different, yet
related, games.

Hex has only a small number of characteristics that we can modify:

• Mode of movement

• Board layout

• Objective

We can change (or add to) one or more of these—in some cases a change
in e.g. board layout implies a new objective etc.

In fact, there is one more aspect to vary, namely the number of players.
Three player Hex may for instance be played on a hexagonally shaped board.
This game will likely end in deadlock unless saved by the additional rule that
when a player can no longer win he is not allowed to make another move.

Games of three or more players will invariably become games of diplo-
macy and tactics unless much information is hidden. Thus three player Hex
is not the game of pure strategy that most two player variants are.
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7.1 Mode of movement

The mode of movement in Hex refers to the specification that the players
alternately place one stone on the board without restrictions. Many addi-
tional or different rules are possible but Piet Hein expressed his satisfaction
with a game of as little contingency as possible.

Usually this sort of change is introduced in order to keep the fundamental
properties while at the same time fixing some imbalance. We saw above
that the first player has a winning strategy and it is generally believed that
an unconstrained first move is a considerable advantage. Therefore, most
changes in mode of movement are concerned with this particular imbalance.

The swap rule Once the first player has played his first stone the
second player is allowed to swap colours so that he becomes the first player
and takes over the opening move. This rule is more often than not used
these days because it balances the game excellently and simply in the spirit
of the game itself.

The point of this rule is that if the first player plays a strong opening
move the second player can just take it over. This forces the first player to
play a weak move that the second player is not likely to want. The problem
then lies in choosing the best among a number of weak opening moves.

It is clear that this problem forces the first player to open with a move
that blurs the strategies of both players and thus adds to the entertainment
of the game. Mathematically, the swap rule changes nothing, except that
now the second player has a winning strategy, namely to swap if and only if
the first player opens with a winning move. The game is still determinable
in every move and still one of the players has a possible win that is only lost
if he makes a mistake (and the opponent takes advantage of the mistake).

The swap rule is of unknown origin but applies to a majority of games—
including that of sharing a pie equally with someone you distrust.

Agreed starting position A simple way of starting a game in which
it is quite opaque which player has the advantage, is to agree on some initial
position of one or more stones. This is an excellent way of handicapping in
case of very different levels of players.

Beck’s Hex Similar to the swap rule, here the second player places
the first player’s first stone. Anatole Beck showed that opening in one of
the acute corners is a losing move thus devising the best forced move.[2]

Double second move Another rule of the same sort is to allow the
second player to move twice after the opening move. This is a great advan-
tage for the second player who can virtually nullify the opening move.

Double moves The double move can be applied to the entire game in
order to obtain a quicker game. Double moves allow for more serious threats
but equally for easier blocking.

Kriegspiel Hex Both players only see their own moves and a referee
announces whether a move is possible or not. Being a game of incomplete
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information, a winning strategy does not exist.
Inspiration for this variant comes from the Chess variant Kriegspiel

which was invented in the late nineteenth century by Henry Michael Temple
and still enjoys some popularity. The Hex variant was suggested by William
McWorter in [17] along with a proof that a winning strategy exists only for
a board size n ≤ 3.

Limited stone supply The players have too few stones to fill the
board and thus must move stones as the supply runs out. The game may
run indefinitely or end in a draw—and will if the players are experienced.

7.2 Board

Piet Hein was very excited with his game that had almost invented itself:
The hexagons realise the demand that no more than three cells meet any-
where so perfectly and beautifully. But of course there is an infinitude of
possible boards that carry the same properties. We will look at just a few
of these.

Isomorphism The board need not have the hexagonal structure. In-
deed, Nash’s first version used a quadratic grid with diagonals in one direc-
tion added. The board can be scrambled in an infinite number of ways that
will render the game unchanged—however, the layout may result in a major
difference in the clarity of the game.

m×n Hex can be generalised to be played on a board of m×n cells—if
m 6= n, it is a different game.

It is easy to see that the player connecting the long sides has a consid-
erable advantage and consequently this is a good way to handicap expert
players against novices. But how big is the advantage? In fact, Martin
Gardner devised a pairing strategy for the player with the short connection
advantage that will win on the board with m = n + 1 even when he moves
second. The strategy is for the second player always to move at the cell
mirroring the one the first player played. On boards with m > n + 1 the
second player can simply ignore plays outside the first n + 1 rows and play
arbitrarily.

Other tilings Hex can be played on any board with distinct home-
lands, some obviously more suitable than others. Cameron Browne describes
play on a map of USA on which the players try to connect Canada to Mex-
ico and the Pacific Ocean to the Atlantic respectively. He notes that the
player connecting north/south has an obvious advantage and, playing first,
will win by opening in California.[5]

Symmetry is no necessity, one could generate a completely random board
and have excellent play. As described above, in order to avoid deadlocks, no
more than three cells should meet at any point.

Bridg-It An early variation of Hex that became a game in its own
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Figure 7.1: Black wins if he plays always on the cell corresponding to White’s
last move.

right is the game Bridg-It, also known as the Game of Gale for the inventor.
The game is played on the edges of two quadratic grids n × (n + 1) and
(n + 1) × n, mutually displaced half a cell horisontally and vertically. The
players play on a grid each trying to establish a connection across his grid
on the long direction. The game was solved by Oliver Gross who devised a
winning pairing strategy for the first player.[3]

Now, for some altered boards it is no longer possible to keep the objective
unchanged. Such is the case with the remaining variants of this section and
they are the variants that bear the least resemblance to the original game.

Unlimited Hex Hein settled on 11× 11, Nash preferred 14× 14 and
modern expert players like to play on 19×19 or larger for greater challenge.
Of course there is no upper limit to the size of the board. An unlimited board
is also possible. Since there are now no sides to connect, a new objective
must be introduced. A simple suggestion is forming a cycle around an empty
or opponent’s cell. Five (or any other number) in a row would be another.
Ronald Evans described this game under the name Tex.[8]

Unlimited Hex is initially infinite and, depending on the objective, will
be likely to end in a draw (if there is an end). For the objectives I suggest,
both players can avoid losing and thus force a draw.

Spherical Hex It comes naturally to want to play Hex on a sphere.
However, there is no mapping of the hexagonal grid on a sphere and so some
capers must be made in order to make it a proper game. One possibility is
to abandon the hexagonal grid and another is to accept an almost spherical
board.

The pattern of pentagons and hexagons normally used for leather foot-
balls known as buckminsterfullerene (which is in fact the molecule C60,
named after the architect Richard Buckminster Fuller) constitutes a proper
mapping but it only has 32 cells and thus makes a very short game. Other
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patterns are possible which will make the sphere playable—e.g. a randomly
generated pattern.

Modulo Hex Conserving the hexagonal grid we can pretend to play
on a sphere (in fact a torus) by considering opposite sides connected.

For the (almost-)spherical boards we will have to have a new winning
condition since a sphere has no edges. We could appoint singular cells that
the players must connect but the simplest and most beautiful winning con-
dition is to surround one or more cells (empty or occupied by the opponent)
with an unbroken chain. This, however, leaves room for both players win-
ning if play continues after the first surrounding has been established.

Y A quite popular game is the game Y that was developed by Craige
Schensted and Charles Titus in 1953.[5] It is played on a triangular board of
hexagons on which both players attempt to connect all three sides with one
chain. It is easy to convince oneself that exactly one player must succeed in
this with arguments similar to those used for Hex.

The board of Y can be seen as a subset of a Hex board—and also vice
versa—but there are some differences. Y is slightly more pleasing in that the
players have exactly the same goal (not just symmetric). But what is more
is that the topography of Hex results in considerably different properties of
the obtuse and the acute corners. In Y all corners and sides are the same.

7.3 Objective

The objective of Hex is difficult to vary unless one accepts completely differ-
ent games. These three were described by Ronald Evans in [8]. Other more
radical variants may combine Hex with Othello, Go or Four-in-a-Row.

Reverse Hex One obvious change in objective is to make the one
to make a connection the loser. The game is still finite, deterministic and
with complete information and so there is a winning strategy. Avoiding a
connection seems to require much less planning and trapping and I expect a
winning strategy to be possible to find easily. It seems that on boards where
n equal first player can win and with n odd second player.

Vertical Hex The first player opens along a side and wins if he can
connect this stone to the opposite side. This variant must be played on an
n ×m board with m 6= n. The first player can force at least bridge moves
on every move but requires more space than the opponent.

The first player will win exactly by playing the edge templates described
in the previous chapter and will thus win on 2×2, 3×4, 4×7 and 5×10. This
contradicts the conjecture of Evans that the required width of the board is
1 + n · (n− 1)/2.

s Vex The first player opens in an obtuse corner and wins if he can
connect to one of the opposite sides. The variant is a first player win which
follows from Piet Hein’s observation that both players cannot be blocked
locally.
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Chapter 8

Recent research

Hex was developed some sixty years ago and it has been shown to be very
unlikely that we will ever be able to solve it. Still, quite some efforts are
made in the exploration of the game for a number of reasons.

First of all, a problem seeming unsolvable has never stopped mathemati-
cians from trying anyway—and trying for hundreds of years.

Secondly, recent efforts have largely been focusing on approaching a so-
lution. Approximated solutions have been achieved by artificial Hex players
that are now able to offer good play. Also the OHex database is able to give
some (however few) hints as to where to look for a solution to Hex.

Thirdly, it is usually so that results in one area yields discoveries that
are applicable to other areas and this is probably one of the main reasons for
the continued digging for the needle in the haystack. Ultimately, Hex is just
the concrete occasion of a more general research of algorithmic approaches
to game trees with large branching.

Finally, the mathematics of Hex is a good excuse for playing games
during working hours.

This chapter will take a tour around the main areas of research being
carried out these years, demonstrating that Hex is a game worth exploring
more than sixty years after its invention.

8.1 The OHex database

Kevin O’Gorman at California Polytechnic State University has commenced
the Sisyphean project of drawing up entire Hex game trees. He is building a
database, named OHex, of played games to be used to evaluate a given board
position and suggest the best next move. Each game is thus represented by
a path from the root of the game tree in question to a leaf.

The website at http://hex.kosmanor.com/hex-bin/board features an in-
teractive Hex board. Each cell is labelled as a possible win or a possible loss.
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It is possible there to play through all the games known to the database, for
each move OHex giving an estimate of the next best move.

Figure 8.1: Screenshot from the OHex database at
http://hex.kosmanor.com/hex-bin/board. The board shows estimates
of whether the different cells are winning or losing moves.

O’Gorman records games on the boards 4×4 up to 11×11 and thus has a
tremendous number of possible board positions to store. His own optimistic
estimate for the number of relevant board positions on the 10× 10 alone is
1039. Add the other boards and he will need storage the size of a city. It is
not necessary to store all possible distributions of stones since a major part
of all games end with less than half the cells occupied—and a 180 degrees
rotation of the board renders it unchanged thus reducing the necessary tree
by one half.

Nevertheless, O’Gorman’s project is of some interest. At the very least,
it can be an aid when playing Hex. The stored games are taken mostly from
actually played games at some of the public online websites that offer Hex.
Only a few are generated automatically by Hex playing computers. This
means that the database can in fact be of help when it contains a major
part of experienced players’ responses to good moves.

For obvious reasons, the branches close to the root have been better
examined than the ones far away. It is not very likely that a particular
game has been played often before with the vast number of possible games.
This is evident when trying to use OHex to aid in a real game. OHex may
thus be of most help in the first few opening moves.

At the moment the database contains less than 30 million board positions
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which is an infinitesimal fraction of the number of possible positions. The
table below lists the current numbers for the different board sizes. The
greater number of sizes 7 and 10 games are due to the accessibity of different
implementations of Hex online.

size games positions
4 365 1661
5 164 1298
6 288 3417
7 1963 33954
8 137 3268
9 2054 54628
10 798395 24507299
11 109025 3972692

Until the OHex database contains a significant part of the possible games
its main use is to estimate the quality of different moves by comparison to
what others have chosen. A well examined move, corresponding to one often
occuring in the database, that OHex expects to win, will very likely be a
very good move since many players have thought so.

Let us for a moment imagine that Kevin O’Gorman manages to store the
complete game trees for many sizes of boards; the general solution to Hex
will still be inaccessible since the database cannot generalise its strategies
in any way but only formulate them in terms of full game trees.

I contributed (slightly) to the project by translating the website into
Danish.

8.2 The Decomposition Method

Another attempt at producing perfect solutions is being made by Jing Yang
who is a computer scientist at The University of Manitoba, Canada. He has
succeeded in tracking a winning strategy for a number of specific openings
on different boards, most notably one on the 9× 9 board. We already know
from Nash’s proof that there are winning strategies for the first player on
any board and Yang supplies us with some of these.

The approach taken by Yang is a method which consists in decompos-
ing a board position into disjoint groups of cells each constituting a secure
connection and these in conjunction a winning connection. The method is
closely related to the development of edge templates but Yang’s templates
also consider the inner board and allow the opponent’s pieces when nec-
essary. The decomposition method also resembles what most players do
unconsciously when playing. Experienced players recognise structures and
simply remember local winning strategies and thus save a number of com-
putations.
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Yang has applied his method so far to boards of up to 9 × 9 manually.
The approach is to consider a specific opening and then decompose the
board into a number of subgames, each containing specific countermoves to
any move by the opponent. In turn, these subgames will decompose into
subgames of their own etc.

The actual construction of the patterns for the complete decomposition
is a difficult process that includes considering any move the opponent might
make. Yang describes taking advantage of the ‘sudden death’ property of
Hex that implies that many positions have moves that are more or less forced
thus eliminating large branches of the game tree.[22]

8.2.1 Decomposition of 5× 5 Hex

As an example of the decomposition method, I have made a reconstruction
of a winning strategy for the opening D3 on the 5 × 5 board. Accordingly,
this is only 1

25 of the complete solution for this board.
The pseudocode is Yang’s and self-explanatory. The algorithm stores a

number of local patterns in a list called SumOfLocalGames; WhiteMove holds
the name of a white intrusion into one of these and BlackMove is the output
i.e. black player’s response. For each move by black, the active local pattern
is removed from SumOfLocalGames and one or more new smaller ones are
added.

Since this method is a sure-fire winning system, any response can be
given to a white move outside the SumOfLocalGames. No attempts have
been made to make this strategy win quickly. What is important is that it
is certain to win.

Black begins and connects upper right to lower left.

LocalPattern1

If(WhiteMove == 18||19||22||23||24) {
BlackMove = 14;
SumOfLocalGames = SumOfLocalGames - LocalPattern1
+ LocalPattern2(10,15)
+ LocalPattern5(1,2,3,4,5,6,7,8,9,11,12,13,16,17,20,21); }
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else if(WhiteMove == 10||14||15) {
BlackMove = 23;
SumOfLocalGames = SumOfLocalGames - LocalPattern1
+ LocalPattern2(18,22) + LocalPattern2(19,24)
+ LocalPattern5(1,2,3,4,5,6,7,8,9,11,12,13,16,17,20,21); }

else if(WhiteMove == 17||20||21) {
BlackMove = 8;
SumOfLocalGames = SumOfLocalGames - LocalPattern1
+ LocalPattern3(22,23,18,14,24,19,15,10)
+ LocalPattern3(3,2,7,12,1,6,11,16)
+ LocalPattern4(4,13,9,5); }

else {
BlackMove = 20;
SumOfLocalGames = SumOfLocalGames - LocalPattern1
+ LocalPattern2(17,21)
+ LocalPattern3(22,24,18,14,24,19,15,10); }

LocalPattern2

If(WhiteMove == 1) {
BlackMove = 2;
SumOfLocalGames = SumOfLocalGames - LocalPattern2; }
else if(WhiteMove == 2) {
BlackMove = 1;
SumOfLocalGames = SumOfLocalGames - LocalPattern2; }

LocalPattern3

If(WhiteMove == 1||3||4||7||8) {
BlackMove = 2;
SumOfLocalGames = SumOfLocalGames - LocalPattern3
+ LocalPattern2(5,6); }

else if(WhiteMove == 2||5||6) {
BlackMove = 4;
SumOfLocalGames = SumOfLocalGames - LocalPattern3
+ LocalPattern2(1,3) + LocalPattern2(7,8); }
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LocalPattern4

If(WhiteMove == 4) {
BlackMove = 2;
SumOfLocalGames = SumOfLocalGames - LocalPattern4
+ LocalPattern2(1,3); }

else if(WhiteMove == 1||2||3) {
BlackMove = 4;
SumOfLocalGames = SumOfLocalGames - LocalPattern4; }

LocalPattern5

If(WhiteMove == 14||15||16) {
BlackMove = 8;
SumOfLocalGames = SumOfLocalGames - LocalPattern5
+ LocalPattern3(3,2,7,11,1,6,10,13)
+ LocalPattern4(4,5,9,12); }

else {
BlackMove = 15;
SumOfLocalGames = SumOfLocalGames - LocalPattern5
+ LocalPattern2(14,16); }

Thanks to the modest size of the strategy one easily follows and validates
it. My 5×5 solution relies on only 5 local patterns, whereas the one solution
that Yang has developed for 9 × 9 requires 715 local patterns, suggesting
that this method, although much more efficient than minimax search, also
undergoes exponential growth.

It is likely that once one has a reasonable supply of known local patterns
it becomes relatively easy to run through them looking for something to fit
into a board one is decomposing or even playing on. This library of local
patterns implies a one-level search as opposed to ordinary tree searches.
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Applied to end-game these results are potentially large improvements to
artificial Hex players. This has not been examined so far though.

Yang expects to be able to automate the process of developing the local
patterns which is necessary if his contribution is to have any significance, as
the work required is quite large. Despite the fact that the patterns already
developed obviously constitute quite a lot of those necessary for the bigger
boards much creativity and intuition is required in the development—if we
are not to reduce the task to the regular brute force search.

8.3 Hex playing computers

Whereas O’Gorman and Yang work on the mapping of parts of perfect
solutions, others have taken a heuristic approach in their research.

As early as 1953 Claude E. Shannon and E. F. Moore developed the
world’s first Hex playing device named the Shannon Resistor Network.[11]
The idea is some fluid or current—or some virtual flow—flowing in a network
between two sides. Each vertex in the network has unit resistance or capacity
and the players enlarge or reduce this resistance or capacity respectively.
Determining the current across the network will give a hint to strategic
vertices.

The result was a Hex player that, according to Shannon, showed good
positional judgement but was weak in end-game combinatorial play.

The idea of viewing the game board as a potential field does in fact
offer a general idea about the value of the current position. However, as
was Shannon’s observation, the network model cannot predict traps or plan
forcing moves as expert human players or even advanced computer programs
can.

Algorithmic search

With the development of the computer Hex was easily implemented but
proved quite difficult to play automatically. The website of the International
Computer Games Association lists a small number of Hex playing programs
of which most either have no artificial player or are implementations of a
known winning strategy on a small board just like my own example of the
decomposition method.

Even with the early and great efforts to create Chess computers no sig-
nificant progress was seen for decades because the objective was primarily
for larger and faster computers and not for better algorithms. We have seen
above that Hex has a game tree very different from Chess in that it is at
most n2 levels deep but in turn branches heavily during the first part of the
game. This results in a massive demand for extra capacity for just one extra
level in a tree search.
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The basic game tree search is known as minimax search. Each node will
be assigned a value recursively, the maximum value of its children if it is
first player choice and minimum otherwise—given explicitly in chapter 4.

Figure 8.2: Left: The game tree of a 2×2 Hex game in an arbitrary ordering.
The minimax algorithm must visit all 52 nodes before determining the value
of the game and the best move. Right: By this ordering of moves, the
alpha-beta-algorithm succeeds in truncating the game tree of 2 × 2 Hex to
13 nodes in determining optimum result for both players—not when devising
a winning strategy.

Alpha-beta search is similar but usually somewhat more efficient in that it
will start comparing values at the parent level too and cut off a subtree if no
better result than that already obtained is possible. Alpha-beta search may
reduce the time consumption but only if the values in the game tree occur
in an order that allows it. However, even with all the best choices on all the
maximising player’s nodes, all the minimising player’s nodes must be visited
for an explicit winning strategy—maintaining the need for exponential time.

Both of the tree search algorithms fail on their own because they work
recursively and thus must visit the leaves of the tree in order to even start
assigning values to other nodes in the tree. They determine the values from
the bottom, so to speak. In the case of Hex, with a wide and shallow
tree, both minimax and alpha-beta-search in themselves have provided no
practical results.

It has been realised that man will not be beaten simply by brute calculat-
ing force. Eventually weighted searches were introduced so that interesting
branches could be examined deeper on the expense of less interesting ones.
Thus, a difficult quest for evalution methods arose searching for a way to
estimate values and to determine interesting moves.

Selective search

The next real step towards a good Hex player was taken by Jack van Rijs-
wijck at The University of Alberta. Rijswijck developed the Hex playing
program called Queenbee as a part of a Master thesis.[20] The fundamental
idea was a selective search guided by an evaluation function based on graph
distance.

According to its own website (http://www.cs.ualberta.ca/˜queenbee/),
Queenbee was first built in 1994 but some of the core functions have changed



8.3. HEX PLAYING COMPUTERS 59

and improved significantly over the years. The particular evaluation function
that made Queenbee notable is called two-distance. Rijswijck describes it
as “best second-best alternative”.

Basically, Queenbee discovers possible connections and determines the
minimum number of moves necessary to complete them. It can be assumed
that the opponent will always attack the best connection, namely the one
requiring fewest moves for completion and therefore the second-best becomes
a good choice for describing the strength of a board position. The distance
from one cell to another or to the side is defined recursively as one more
than the ‘smallest but one’ of the neighbour cells’ distances.

Queenbee plays at the level of intermediate human players and was ex-
ceeded by a stronger computer program named Hexy, developed by Vadim
V. Anshelevich in 1999. Hexy is based on deducing virtual connections in
subgames, an algorithm known as hierarchical search—in short H-search.

H-search

The key idea behind H-search is to apply two rules alternately to discover
connections that are secure but still need to be realised. The well-known
bridge is one of the most simple virtual connections.

A set of cells contains a virtual connection between two distinct cells
if and only if the connection can be realised, even if the opponent moves
first. A virtual semi-connection requires the player to move first. The rules
described as the OR rule and the AND rule combine virtual connections and
virtual semi-connections thus heavily reducing the tree search necessary for
good play.[1]

The AND rule Two virtual connections with exactly one end cell
in common are reducible to one virtual connection if the common cell is
occupied; a virtual semi-connection if the common cell is empty.

The OR rule Two virtual semi-connections with only their two ends
in common are equal to a virtual connection.

The bridge is an excellent example of the OR rule applied to two minimal
virtual semi-connections whereas the AND rule can be demonstrated by the
example of fig 8.3.

This figure does in fact show a simple example of hierarchical search
(short: H-search). Initially we have a set of cells in which the only con-
nections are between neighbours. Applying the AND rule gives us the four
virtual semi-connections; the OR rule used twice establishes two virtual con-
nections. Finally, the AND rule once more shows that the two ends are in
fact virtually connected via this repeated use of two simple deduction rules.

H-search may continue until no more virtual connections or semi-
connections are deducible or until a winning virtual connection is estab-
lished. In the implementation of H-search in Hexy, a limit of 20 iterations of
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Figure 8.3: The OR and the AND rule demonstrated: The board position
is translated into four virtual semi-connections which are reduced to two
virtual connections in turn equal to just one strong virtual connection.

the deduction rules have been set up in order for it to execute in reasonably
short time.

Anshelevich himself showed that there are virtual connections that the
AND and the OR rules are unable to discover.[1] However, Rune Rasmussen
and Frederic Maire of Queensland University of Technology have showed how
to extend the search beyond some failed OR connections.[18]

The extension of the H-search takes advantage of something similar to
what Jing Yang exploits, namely the forced move regions. In the case of
H-search, the OR rule fails if the virtual semi-connections overlap and the
opponent must play in this region for the connection to fail. Only considering
these must-play regions, Rasmussen and Maire have devised an improvement
to the algorithm which reduces the interesting branches to only those that
overlap.

H-search has also been implemented in Six by Gábor Melis with a re-
sulting Hex player that is currently the strongest available.

8.4 Expected results

On the basis of the chapters above, we can safely say Hex will not be solved
one of these days. So let us conjecture a little about what we can expect to
see in the future regarding Hex.

First of all, Six probably will not be able to keep the status as the
strongest artificial Hex player. Six has been released as open source so
it is likely that someone will modify the algorithms slightly for improved
performance. We might also see a completely new program, combining some
of the techniques described above; especially Jing Yang’s decomposition
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patterns have potential for one such, but the knowledge collected about
opening strengths by both OHex and Queenbee could provide details about
the strategic values of the Hex board. A detailed opening library may well
be developed soon.

We can also expect Jing Yang or others to accomplish larger decomposi-
tions still. If someone manages to automate the decomposition process this
method will surely provide extremely strong information for the program-
mers of artificial Hex players.

OHex can be expected to grow and perhaps even faster with the success
of online gaming websites and maybe also some automation. That it will
probably not gain us any deep insights have been elaborated upon above.

The large group of problems in the complexity class PSPACE will prob-
ably grow and attention to it remain extensive. General belief is that no real
progress is possible in this area but there may be some gains in examining
and possibly translating the heuristics of other PSPACE-hard problems.

Should the unlikely event occur that someone works out a general stra-
tegy that seems to work against all the best Hex players, there is still not
enough time available for it to be anything near properly verified. We can
relatively easily expose it to very diverse problems in PSPACE, though. If
it holds against all these, however unlikely, we have come a long way.
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Chapter 9

Conclusion

We have taken a tour from history, over game theory, graph theory and
complexity theory to game analysis and computer science. I have tried
to gather all aspects of Hex into one presentation in a balance between
shallowness and meticulousness.

I hope to have succeeded in making a significant contribution to the
scarce literature on Hex. My discoveries may be only a small part of the
full picture but I hope to have provided future researchers with a basis that
clearly points out the areas worth looking into—and with hints as to where
to look for the information that I did not provide.

I have stated that Hex will probably not be solved in the near or distant
future, but I expect the game to be the subject of much research anyway.
Game theory is still a quite young discipline and many problems have not
been examined extensively with an algorithmic approach yet. We may well
see the results from Hex extended and generalised into highly different realms
over the next years.

Hex has proven itself a research area in its own right with deep and far-
reaching perspectives. But even if you don’t care about perspectives, Hex
is a genuinely entertaining game that anyone can play.
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Appendix A

Hex to a wider audience

One part of this thesis has been to promote Hex to a wider audience outside
the limited circles of mathematicians. I have used three means for this
promotion.

Quite early in the writing process of this thesis I established a website
that has developed along with my research and writing.

About halfway through the thesis I wrote a feature article for Politiken.
They did not accept it and I rewrote it for a competition.

Finally, I and a fellow student have begun writing a textbook on Hex for
the upper secondary school.

Below is a print of the website, a copy of the feature article and a pre-
liminary synopsis for the textbook.

A.1 Website

As one of my first actions when starting the work on this thesis I published a
website on which I have been posting excerpts from my work in order to get
comments, ideas and just to get in touch with other people with an interest
in Hex. The address is

http://maarup.net/thomas/hex/

The website has more than a hundred views per week thanks to the
numerous ingoing links and good search results. I have been contacted a
few times by people with questions and comments.

The website is targeting people who already know Hex and are familiar
with some of its mathematical properties or at least with some mathematical
terminology.
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Figure A.1: A screen dump from my website on Hex. The full and updated
text is found at http://maarup.net/thomas/hex.
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A.2 Popular article

The following is a feature article in Danish that I wrote for Politiken. They
did not accept it so I rewrote it to participate in a competition on scien-
tific communication at the Faculty of Science and Technology, University of
Southern Denmark.

The objective of the competition was to write a popular article about a
scientific subject so that it might fit into a newspaper. The article recieved
honourable mention.

The intended audience is people without significant knowledge of math-
ematics or game theory and a compromise between the scientific strictness
and a popular tone was necessary. The article is only available in Danish.

“Pludselig midt i morgendæmringen v̊agnede et spil og krævede at blive
født. I dag er det modent til at slippes ud i verden, og det er det, som her i
al julelig uskyldighed skal forsøges.”

∗

S̊adan begynder Piet Hein en introduktion til et spil, som han opfandt
i julen 1942 og præsenterede for Politikens læsere i mere end halvtreds
rubrikker igennem et halvt år fra 26. december 1942. Spillet er s̊a enkelt,
at man kan undre sig over, at det ikke er en af de tusind år gamle klassikere
som skak og backgammon.

Trods enkelheden er spillet genstand for moderne forskning i matematik
og datalogi—og kan m̊aske give ny viden om kunstig intelligens og løse en
lang række optimeringsproblemer indenfor b̊ade industri, logistik og plan-
lægning.

Samtidig er det et dybt underholdende spil som kan spilles uden forud-
sætninger.

∗

Hex er et spil for to spillere, og det spilles p̊a en plade af sekskanter—som
en tavle bivoks—med form som en skæv firkant med fire lige store sider, en
rombe.

Den ene spiller ejer to modst̊aende sider, og den anden spiller ejer de
to andre. Man skiftes til at placere en brik p̊a et valgfrit felt, og den, der
med en ubrudt kæde af brikker skaber kontakt mellem sine to sider vinder
spillet. Reglerne er alts̊a enormt simple, og alligevel viser spillet sig at være
p̊a niveau med skak i dybde og kompleksitet. Piet Hein valgte oprindeligt
at spille p̊a en rombe med 11 felter langs hver side, men man kan ogs̊a med
fordel spille p̊a større brætter, n̊ar man er øvet.
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∗

Hex samler p̊a forunderlig vis en hel række spændende historiske, mate-
matiske og bare underholdende egenskaber, som det er typisk for den alsidige
Piet Hein. Spillet hed ‘Polygon’, da Piet Hein første gang præsenterede det
for et publikum.

Han havde i en længere periode arbejdet med spil og forsøgt at finde
frem til essensen af gode spil og resultatet var Hex.

Igennem seks m̊aneder skrev Piet Hein mere end halvtreds stykker om
Hex i Politiken og udskrev desuden præmiekonkurrencer om 50 og 100 kr.
for de bedste løsninger p̊a fiktive spilsituationer.

∗

P̊a Princeton University i USA udviklede John Nash (kendt fra filmen A
Beautiful Mind) det samme spil i 1949—bare syv år efter Piet Hein. Nash
modtog i 1994 Nobelprisen i økonomi for sit bidrag til økonomisk spilteori.
P̊a Princeton hed spillet ‘Nash’, eller ifølge en populær, men tvivlsom, mor-
somhed ‘John’, fordi man spillede p̊a kollegiebadeværelsernes sekskantede
fliser—John er amerikansk slang for lokum. Det var et amerikansk spil-
firma, der gav spillet navnet Hex og det er det navn, det kendes under i
dag.

Da Piet Hein senere fik spillet produceret i ædeltræ, et flot eksempel p̊a
Danish Design, kaldte han det med vanlig opfindsomhed Con-Tac-Tix, som
et ordspil dels p̊a spillets to hovedelementer—kontakt og taktik—og dels p̊a
tick-tack-toe, som er det engelske navn for kryds og bolle.

∗

Piet Hein fortæller i Politiken, at spillet bygger p̊a to simple ideer, og
“da disse havde fundet hinanden, var ikke alene ideen født men hele spillet
udformet”. Den ene af de to ideer bag Hex er en gammel matematisk sætning
kendt som firefarvesætningen.

Sætningen siger, at det er muligt at farve ethvert landkort med kun
fire farver, s̊aledes at to nabolande aldrig har samme farve. Det har drillet
matematikere i flere hundrede år og blev først bevist i 1976 som det første
større problem, der blev løst ved hjælp af en computer.

Det er en konsekvens af firefarvesætningen at det ikke kan lykkes for
begge spillere at lave en forbindelse henover spillebrættet, det vil sige at
spillet ikke kan ende med to vindere.

Piet Heins anden ide var den, som sikrer at heller ikke begge taber.
Mindst én af spillerne vil f̊a etableret en forbindelse. Det er en egenskab
ved sekskantstrukturen. Havde brættet for eksempel været kvadreret ville
de fleste spil ende uafgjort—skakbrættet kan ses som et eksempel p̊a et
uafgjort spil mellem sort og hvid.



A.2. POPULAR ARTICLE 69

Piet Hein fortæller, at med m̊alet “at forbinde to modst̊aende sider”
og “brættet med sekskanter” har spillet nærmest opfundet sig selv. S̊a er
reglerne næsten skrevet. Hans eneste bidrag har været at bede spillerne
skiftes til at placere en brik.

Da det er s̊adan at netop én spiller opn̊ar forbindelse p̊a tværs, følger det
at offensivt spil og defensivt spil kan være lige godt. Lykkes det at forhindre
modspilleren i at skabe forbindelse, vil man opdage, at man selv, m̊aske uden
at vide det, har f̊aet sin egen forbindelse lavet. Kan man ikke gennemskue,
hvordan man skal opn̊a sin egen forbindelse, kan man alts̊a blot nøjes med
at koncentrere sig om at stikke en kæp i hjulet p̊a modstanderen.

∗

John Nash viste, at der, for den som starter, findes en strategi, som
garanterer sejr, uanset hvor god modspilleren er. Det eneste problem er, at
ingen endnu har fundet denne optimale strategi. Trods beviset for at der
findes en vindende strategi i Hex, er det ikke sandsynligt, at den nogensinde
vil blive opdaget.

Forsøger man at finde den, er den oplagte opskrift at spille alle de mulige
spil igennem—der er jo højst s̊a mange mulige træk som der er felter p̊a
brættet. Det er ikke nødvendigvis den nemmeste m̊ade at gøre det p̊a—men
den bedste som vi kender. Fremgangsm̊aden viser sig dog hurtigt at give
alvorlige problemer. Regner man ud hvor mange træk, man skal igennem
bare p̊a standardbrættet vil antallet i disse spalter fylde adskillige linjer,
det er et tal med næsten 200 cifre. Hvis man sætter en rigtig hurtig com-
puter til at undersøge en million spil i sekundet vil solen være udbrændt
og universet kollapset, længe inden den er blevet færdig. Og det var kun
standardbrættet—herefter kommer brætter i alle andre mulige størrelser, før
man har en fuldkommen løsning.

Det ser meget ud til, at der slet ikke findes en nem måde at finde en vin-
derstrategi p̊a. Hex tilhører nemlig en type af problemer i matematikken,
som er særligt genstridige. Problemerne har det til fælles, at der ikke kendes
nemme løsninger. Desuden er det s̊adan, at hvis man skulle finde en løsning
p̊a blot ét af problemerne, kan den løsning oversættes til alle de andre prob-
lemer. S̊adan en løsning er der udlovet en dusør p̊a en million dollars for.

∗

Der er naturligvis matematikere og dataloger, der faktisk leder efter vi-
denskabelige metoder til at blive bedre Hex-spillere. For eksempel ved at
f̊a computere til at spille Hex, ligesom IBM-computeren Deep Blue, der
præsterede at sl̊a stormesteren Garry Kasparov i skak i 1997.

Man kan forsøge at lære en computer at spille Hex. For eksempel ved
at studere strukturer, der g̊ar igen, s̊a computeren kan lære en sekvens af
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træk udenad. En anden mulighed er at beregne, hvor p̊a brættet der er
den tilsyneladende bedste forbindelse og s̊a bygge videre p̊a den. Der er
forskellige tilgange, og i de årlige computermesterskaber i Hex bliver de
forsøgt mod hinanden. Sidste år var det et ungarsk computerprogram, der
løb med sejren. Men det er endnu langt fra at kunne besejre de bedste
menneskelige spillere, fordi menneskets hjerne arbejder p̊a et langt mere
abstrakt niveau, end det kan lykkes at programmere en computer.

∗

Matematikerne fortsætter ufortrødent det vanskelige arbejde, fordi det
ofte er s̊adan, at store gennembrud sker, n̊ar man arbejder med noget uden
helt at kende perspektiverne.

Sikkert er det, at arbejdet med Hex giver et forskningsmæssigt afkast i
form af stærkere søgealgoritmer og resultater, der kan bruges i forskning i
kunstig intelligens. En fuldstændig løsning af Hex—det vil sige en kortlægn-
ing af alle vinderstrategier—vil være et stort bidrag til utallige problemer
og være et gennembrud i optimeringsteori.

For almindelige mennesker gælder først og fremmest, at Hex er et godt
og tilfredsstillende spil. Men det er ogs̊a ofte s̊adan, at spil er en camoufleret
m̊ade at træne matematik p̊a. Tit er det elementær hovedregning og hukom-
melse, men generelt styrker mange spil abstraktionsevnen. I Hex benytter
man specifikt mønstergenkendelse og det at kunne se nogle træk frem, som
begge er væsentlige matematiske analyseredskaber.

∗

Piet Hein døde i 1996, i år ville han være fyldt 100 år og det er en
anledning til at mindes og beundre hans kreativitet og alsidighed. Grukkene
og Superellipsen er blevet Piet Heins kendteste varemærker, men s̊a absolut
ikke hans eneste succeser. Hex er blot endnu et eksempel p̊a hans evne
til at lave de mest simple konstruktioner, som bygger bro mellem det let
tilgængelige og videnskabens dybe perspektiver. S̊a er man ligeglad med
perspektiver, kan man bare nyde Hex som et dybt underholdende spil der
kan spilles af enhver.

∗

Thomas Maarup skriver speciale om Hex, dets historie, matematiske
egenskaber og konsekvenser. Læs mere p̊a maarup.net/thomas/hex.

A.3 Teaching material

I have commenced work on a textbook about Hex aimed at the upper sec-
ondary school. Co-author is Steffen M. Iversen, a fellow student who is
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mainly interested in the mathematics education. There is a clear division
of work between us as I provide the contents and he has the educational,
didactical focus on structure, methods etc.

The book’s ambition is to be an entertaining introduction to graph the-
ory and some game theory but also to show the potential of mathematics as
a subject of good stories. The result so far is a synopsis and draughts for
the first two chapters.

[A synopsis in Danish was included in the original paper.]
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Appendix B

Additional material
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B.1 Polygon in Politiken

Hex was first introduced in the Danish newspaper Politiken under the name
Polygon. This is a complete list of what the column presented.

1942

December 26 Introduction to
the principles of connec-
tion and the hexagonal
pattern. Rules description
and strategic hints. Ex-
ample opening and prob-
lem 1 which is a prize con-
test.

December 27 New opening
example. Analysis of
boards 1 × 1 through
5 × 5. Description of
“rubbing shoulders”
(ladder). Problem 2.

December 28 New opening.
Problem 3.

December 29 New (amusing)
opening. Problems 4 and
5.

December 30 New opening.
Problem 6.

December 31 New opening.
Problem 7.

1943

January 1 Ending of prize
contest and introduction
to a new prize contest
about playing a good
game. Politiken’s playing
pads announced.

January 2 Problem 8.

January 3 Problem 9.

January 4 Problem 10.

January 5 Problem 11.

January 6 Problem 12.

January 7 Problem 13.

January 8 Problem 14.

January 9 How to block an
advancing row. Problem
15.

January 10 Counter-offensive
to the bridge. Problem
16.

January 11 Problem 17.

January 12 Advertisement:
Train compartment.

January 13 Introduction of
cell labelling. Problem
18.

January 14 Problem 19.

January 15 Problem 20.
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January 16 Advertisement:
Strategy?

January 17 Advertisement:
All-Clear.

January 20 Walk-through of
the prize winner.

January 23 Problem 21.

January 26 Advertisement:
At the dentist’s.

January 27 The bridge move
reintroduced, also as a
countermove. Problem
22.

January 30 Invitation to a
demonstration at Poli-
tiken February 1. Prob-
lem 23.

February 3 Problem 24.

February 6 Problem 25.

February 10 Problem 26.

February 13 Problem 27.

February 17 Problem 28.

February 20 Problem 29.

February 25 Problem 30.

February 27 Problem 31.

March 3 Problem 32.

March 6 Announcement of to-
morrow’s prize contest.

March 7 Prize contest about
best played game with a
given opening.

March 10 Problem 33.

March 13 Solution to problem
33.

March 17 Problem 34.

March 20 Problem 35.

March 21 Advertisement:
Cinema.

March 24 Problem 36.

March 27 Announcement of
prize winner.

March 31 Problem 37.

April 3 Problem 38.

April 7 Problem 39.

April 10 Problem 40.

April 14 Problem 41.

May 12 Problem 43.

June 16 Problem 44.

June 23 Problem 45.

June 30 Problem 46.

July 9 Problem 47.

July 21 Problem 48.

August 11 Problem 49.
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B.2 Hein’s manuscripts

I have discovered some previously unpublished manuscripts by Piet Hein.
Some of these were quite interesting and reveal some of Hein’s thoughts on
Hex. This section contains a translation of three hand-written manuscripts:

The Parenthesis I believe that this is Hein’s lecture at the association at
The University of Copenhagen where Hex was introduced to a public
for the very first time.

Demonstration This is the manuscript for a demonstration of Hex. Poli-
tiken announced such an event on February 1, 1943 and this is probably
it.

Play with different people This short paper may be a sketch for the col-
umn in Politiken or just a realisation committed to paper. It describes
the difficulties in finding the winning strategy.

The manuscripts are all without titles and so these are my additions. A
hand-written manuscript is not easily printed and so educated guesses were
necessary with a few of Hein’s symbols and squiggles. Also, his underlining
has been replaced with italics. My comments appear in square brackets.

B.2.1 Lecture at The Parenthesis

a very small contribution to clearing out in the miserable conditions with
regards to mathematics and physics as expressed by Aage Bohr. [Added in
the top margin]

What I intend to provide tonight is merely a sketch of a thought to an
introduction to a game. The idea is to look at mathematics as a game, and
the game is a simple example of looking at games as mathematics. I am not
sure how much spiritual nourishment there is in it for you, so it would put
me at ease if you would continue eating and drinking.

A couple of years ago a literary critic of the kind who—rightly so—sees
his own elevated position in deriding the human ability called intelligence
wrote in an article on something completely different that mathematics can-
not offer us anything than what was already in the premises. This is quite
correct. And it sheds a light of foolishness on the business of mathematics.
And in this article he did go on as if mathematics with this remark once
and for all had been rendered useless.

When it is correct that mathematics can only offer us what was already
in our premises, then how can it be that his conclusion—that mathematics
is a quite foolish and superfluous business—is wrong?

The answer is provided in an equally simple remark: only mathematics
can show us what was already in our premises!
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The relation between mathematics and empirical science notably is that
mathematics creates models and what these models are models of—well,
that can be shown only by empirical means.

When I say that mathematics creates models then that is in a wide sense
of the word. Spatial does not always correspond to spatial. It is in a highly
general sense a structure which depicts a structure of things.

How can one term mathematical formulae and expressions structure; the
structure is not what is put down on paper.

The structure emerges from the rules for the symbols on the paper. Rules
according to which the symbols can be rearranged.

With mathematically described structures the rules can be made con-
crete by making a mechanical model which rearranges the symbols for you.
However, in general the principle is that you yourself are obliged to manip-
ulate the symbols and this game—given by the symbols and the rules—that
is the model.

In this audience these obviously are self-evident truths. I am sketching
this very general idea for you because I find that it is the correct answer
to the popular mix of mathematics and science or inappreciation of what
mathematics offers.

I shall now narrow my subject considerably.
There are certain kinds of structures which are not produced for math-

ematical reasons or for utilisation as technical models. These are what are
popularly referred to as games, made for entertainment, as the basis of a
formalised battle—but it remains an equally valid piece of mathematical
structure.

In games—in this everyday narrower sense—it is characteristic that the
structures are manipulated by 2 or more, up to several, players.

The structures of the games are mathematically highly different—what
they share are completely different qualities.

By observing a number of existing games and contemplating the idea
of the game—the concept of games—I have come up with the following 6
requisites which games must—ought to respectively—satisfy. And the degree
to which they satisfy them at least is an indication of the game’s value as
game.

1. fair

2. progressive

3. final

4. easy to comprehend

5. strategic

6. decisive
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Most games: Increasing points. Pieces forcing others back and advanc-
ing.

I The idea of utilising the quality of the plane that no more than 4 points
connect.
The Four Colour Conjecture
A toric ring 7

II Quantify
No moves—but paper and pencil
The chronology is shown on only one board.

First player win provable unlike chess. I believed second player could
win.

Strategy
Offensive
Counteroffensive

Tasks [Apparently to be posed during the lecture]
Not comparable with chess quite amusing that a game can be created

which in principle is so simple yet is impossible to master.
Does not the poet say:
[The manuscript is clearly unfinished. Hein must have improvised the

rules of Hex and the tasks or have had them elsewhere.]

B.2.2 Demonstration

The point of this demonstration evening and this pompous scenery before us
is to provide some of that which cannot be provided in newspaper articles or
in a printed set of instructions, viz the direct contact with the game. Here
we can talk about it refer to it. We are with the game.

I must preface this by saying that I am by no means an excellent Polygon
player and I do not feel obliged to be so merely because I happen to be the
inventor of the game.

I will shed theoretical light on the game and its strategy whereupon a
really good player will handle the practice of the game and play it with 1
or more of the audience as time allows so that we will be able to see the
characteristic strategic elements of the game in operation.

[Crossed out]
I would like to welcome you all to this demonstration of Polygon.

I hope we shall succeed in providing you with just that which
cannot be provided in brief newspaper articles or in a printed
set of instructions, viz the direct contact with the game in which
one can constantly refer to the game itself, really show it.
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I shall begin with the beginning, not only for the sake of the beginners
but to give some order to the explication. Advanced players too may benefit
from hearing the motive forces systematically described and possibly in a
different way than they have formulated them themselves.

The very first point is: why must the game look just like that?
When embarking on a new game I believe one asks of oneself: Is it not

quite arbitrary. . . ? Could it not just as well. . . ? Why must I adhere to such
an arbitrary practice?

With regards to this game I can put your mind at ease. It is not arbitrary.
By its very idea this game could look no other way.

It came into being—stumbled into being—thus:
For a number of years it has been my hobby to consider the structure of

the various (ex.) games and the possibilities for new games.
This has resulted in a long series of requirements which must be satisfied

by any good game—and in my discovering a new kind of opportunity which
had not yet been utilised. This list of general requirements is a highly
disparate throng, the first one being that the players for all intents and
purposes must be equal (to which we shall return).

Then follows a number of less simple demands, e.g. that a game must
be progressive, it ought not to tend to move in circles; it must be final, i.e.
after a limited period or number of moves this progression must reach its
conclusion; it must be easy to comprehend which is a more subtle require-
ment meaning practically that no move is to stir up the situation, turning
all advantages to disadvantages and vice versa, making it impossible to plan
regularly winning tactics. The final requirement is that the game must not
have a tendency to end in a draw. And it must be versatile in its possibil-
ities for combination. And then a game like this must be implicit (math);
an explicit, mathematical solution must not be possible

The idea behind the game is this: Most games are based on. . . competing
number of points or forcing each other back or reduction of the opponent’s
markers. However, no games have yet employed the simplest quality of a
surface, that which can be described thus: Taking a square, regardless of
form, and drawing through it a straight or crooked connecting line between
the two opposite sides and one between the two others, the two connecting
lines must cross each other. —This has not been utilised before though it
is such a simple quality that it seems like an obvious quality of the sur-
face; however, it is not; mathematical surfaces can be constructed whose
connecting lines do not cross each other.

It struck me that this could be employed as the principle of a game just
as well as competing number of points and markers forcing back or reducing
each other. One part is given the objective of combining the two sides, the
other of combing the other two. How to partition this into specific moves?

Constructing the gameboard from square cells—or triangular cells for
that matter—then four or more cells will touch by their corners which will
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stunt the game. Imagine a squared board like a chessboard and think of 4
squares that connect each with the point of a corner in one point.

This will happen in any gameboard on which more than 3 cells connect
in one point.

Therefore one has to choose a construction in which only 3 cells are
connected. The simplest regular solution is the hexagonal grid. On a board
like this it can be proven that the game cannot end in a stalemate. Black and
White cannot both block each other. One of them must make a connection.
Indeed the only obstruction to one player’s connection is the other’s.

The subsequent task was simply to select a suitable number of cells.
With some knowledge of the game it is practically a given that it must be
11× 11.

And there is no reason to delimit the rule from the general: that markers
can be placed anywhere. —In order to not having to introduce 1. player and
2.

When the two halves of the idea—i.e. the crossed connections and the
hexagonal grid—had found each other, not only was the idea conceived but
the entire game was executed.

To an unusual degree the execution is a direct consequence of the idea.
It has not been necessary for me to intrude into it. One might ask if the
Jack of Diamonds or the Queen of Spades in Bezique should not be worth
50 or 100 points, if the rooks in chess ought not to only move 4 squares
at a time, or if the tricks in Bridge should be decided by the suit of the
cards—but when the idea of Polygon is given then the entire look and law
of the game has been settled. There is nothing arbitrary. I think it must
be a nice thought for players of a new game that the inventor’s capricious
whims did not dictate the laws to which one submits but that the game
crystallised from its idea in the only possible form.

Unlike a multitude of ideas for games that had only theoretical interest
and ended up in my desk drawer, it turned out that this game to a very
high degree satisfied the previously mentioned requirements that must be
demanded of a game.

B.2.3 Play with different people

Initially one tends to have the impression that the player with the first
move—White—has a great advantage. Indeed, many people have even
jumped to the conclusion that White is always able to win in very few
moves.

The misconception rests in the players at this stage not yet having prop-
erly learned to cross each others paths: to fully exploit counteroffensives.

Upon learning to execute a powerful counteroffensive against the first
move, one might for a time believe that it is advantageous not to begin
because Black immediately can perform an obstructing countermove.
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However, White has the same advantage over Black in his next move!
Etc.—

Precisely this continuous alternation of counteroffensives is what ensures
that none of the players can travel a direct route but rather that the paths
entangle, possibilities branch off and the game comes alive.

But if you believe you have found a strategy which allows White to
always win, you ought to calm yourself with the knowledge that gaming
experts have tested the game for months and have reached the conclusion
that in practice there is no discernible difference between the situations
of White and Black, and that the absolute command of the game in all
probability lies beyond the practically possible.

A teasing little quality in Polygon is that with regards to this game,
unlike most other games, it can be proved that whoever begins can always
win in theory, that is if he were able to foresee all the possibilities of the
game.

The only manner of testing a “surefire winning system” is to play with
other, unfamiliar players. People who have learned Polygon independently
from you have often developed a completely different strategy, frequently
including counteroffensives which your strategy has not considered.

It is impossible to even begin to appreciate the manifold possibilities of
the game by only playing it with the same opponent or with oneself.

The road to mastering Polygon is to play with as many as different people
as possible.



82 APPENDIX B. ADDITIONAL MATERIAL



Bibliography

[1] Vadim V. Anshelevich. A hierarchical approach to computer Hex. Ar-
tificial Intelligence, 2001.

Describes H-search and its implementation in Hexy.

[2] Anatole Beck, Michael N. Bleicher, and Donald W. Crowe. Excursions
into Mathematics. A. K. Peters, the Millenium edition, 2000.

Reprint of a book from 1969 which was the first to prove
that Hex cannot end in a draw. Puts Hex in a context of tree
games.

[3] Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy. Winning
Ways for Your Mathematical Plays. Academic Press, 1982.

Deals with many games and their general properties. Relates
Hex to positional games and finds common strategies.

[4] Ken Binmore. Fun and Games—A Text on Game Theory. D. C. Heath
and Company, 1992.

Mainly economic game theory. Proves that Hex cannot end
in a draw and that this is equal to the Brouwer Fixed-Point
Theorem.

[5] Cameron Browne. Hex Strategy—Making the Right Connections.
A. K. Peters, 2000.

The first book solely on Hex. Touches the history and other
aspects but is primarily focused on describing playing stra-
tegy. Players have questioned some of the advice given.

[6] Cameron Browne. Connection Games—Variations on a Theme.
A. K. Peters, 2005.

Describes properties of the genre connection games in partic-
ular exemplified with Hex and Y.

83



84 BIBLIOGRAPHY

[7] Edmund Christiansen. Elementer af Matematisk Spilteori. Syddansk
Universitet, 2004.

Danish textbook on elementary game theory.

[8] Ronald Evans. Some Variants of Hex. Journal of Recreational Mathe-
matics, 8(2):120–122, 1975–1976.

Describes a number of variants of Hex, mainly varying the
objective.

[9] S. Even and R. E. Tarjan. A Combinatorial Problem Which is Complete
in Polynomial Space. Journal of the Association for Computing Ma-
chinery, 23, October 1976.

The first to prove that a generalisation of Hex belongs to
PSPACE.

[10] David Gale. The Game of Hex and the Brouwer Fixed-Point Theorem.
The American Mathematical Monthly, 86:818–827, 1979.

Proves that Hex cannot end in a draw and that this is equiv-
alent to the Brouwer Fixed-Point Theorem.

[11] Martin Gardner. Mathematical Games—Concerning the game of Hex,
which may be played on the tiles of the bathroom floor. Scientific
American, 197:145–150, 1957.

The article that made Hex known to the general public. De-
scibes some history, Nash’s sketch proof of first player win
and the winning pairing strategy of n× (n + 1) Hex.

[12] Martin Gardner. The Scientific American Book of Mathematical Puzzles
and Diversions. Simon and Schuster, 1959.

A collection of columns from the journal. An addendum de-
scribes Y and Shannon’s Resistor Network.

[13] Michael R. Garey and David S. Johnson. Computers and Intractabil-
ity. A Guide to the Theory of NP-Completeness. W. H. Freeman and
Company, 1979.

Textbook on general complexity theory. Brief mention of Hex.

[14] Ryan Hayward. Berge and the Art of Hex. 2003.

Chapter about Claude Berge and his relation
to Hex for a book in his memory. Available on
http://www.cs.ualberta.ca/˜hayward/papers/pton.pdf



BIBLIOGRAPHY 85

[15] Piet Hein. Polygon. Politiken, December 26, 1942–August 11, 1943.

Around 50 columns in which Piet Hein wrote about Hex and
posed 49 problems.

[16] Harold W. Kuhn and Sylvia Nasar, editors. The Essential John Nash.
Princeton University Press, 2002.

John Nash’s life and work. Has a short mention of Hex by
John Milnor.

[17] William A. McWorter, Jr. et al. Problems. Mathematics Magazine,
54(2):85–86, March 1981.

Mathematical problem and solution. The first to introduce
Kriegspiel Hex; proves winning strategy iff n ≤ 3.

[18] Rune Rasmussen and Frederic Maire. An Extension of the H-Search
Algorithm for Artificial Hex Players. In AI 2004: Advances in Artificial
Intelligence. 17th Australian Joint Conference on Artificial Intelligence,
2004.

Describes an extension of H-search which is able to discover
virtual connections that ordinary H-search cannot.

[19] Stefan Reisch. Hex ist PSPACE-vollständig. Acta Informatica, 15:167–
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